BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 12591601)

  • 1. Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos.
    Carter AD; Sible JC
    Mech Dev; 2003 Mar; 120(3):315-23. PubMed ID: 12591601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of the XChk1 signaling pathway in Xenopus laevis embryos.
    Kappas NC; Savage P; Chen KC; Walls AT; Sible JC
    Mol Biol Cell; 2000 Sep; 11(9):3101-8. PubMed ID: 10982403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition.
    Collart C; Smith JC; Zegerman P
    Dev Cell; 2017 Jul; 42(1):82-96.e3. PubMed ID: 28697335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis.
    Wroble BN; Finkielstein CV; Sible JC
    BMC Dev Biol; 2007 Oct; 7():119. PubMed ID: 17961226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome wide decrease of DNA replication eye density at the midblastula transition of
    Platel M; Narassimprakash H; Ciardo D; Haccard O; Marheineke K
    Cell Cycle; 2019 Jul; 18(13):1458-1472. PubMed ID: 31130065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant negative E2F inhibits progression of the cell cycle after the midblastula transition in Xenopus.
    Tanaka T; Ono T; Kitamura N; Kato JY
    Cell Struct Funct; 2003 Dec; 28(6):515-22. PubMed ID: 15004421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chk2/Cds1 protein kinase blocks apoptosis during early development of Xenopus laevis.
    Wroble BN; Sible JC
    Dev Dyn; 2005 Aug; 233(4):1359-65. PubMed ID: 15937936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts.
    Guo Z; Kumagai A; Wang SX; Dunphy WG
    Genes Dev; 2000 Nov; 14(21):2745-56. PubMed ID: 11069891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos.
    Ueno S; Kono R; Iwao Y
    Dev Biol; 2006 Sep; 297(1):274-83. PubMed ID: 16919259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titration of four replication factors is essential for the Xenopus laevis midblastula transition.
    Collart C; Allen GE; Bradshaw CR; Smith JC; Zegerman P
    Science; 2013 Aug; 341(6148):893-6. PubMed ID: 23907533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of Claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition.
    Gotoh T; Kishimoto T; Sible JC
    Dev Biol; 2011 May; 353(2):302-8. PubMed ID: 21396931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An essential role for transcription before the MBT in Xenopus laevis.
    Skirkanich J; Luxardi G; Yang J; Kodjabachian L; Klein PS
    Dev Biol; 2011 Sep; 357(2):478-91. PubMed ID: 21741375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis.
    Collart C; Christov CP; Smith JC; Krude T
    Mol Cell Biol; 2011 Sep; 31(18):3857-70. PubMed ID: 21791613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition.
    Kerns SL; Schultz KM; Barry KA; Thorne TM; McGarry TJ
    PLoS One; 2012; 7(5):e38009. PubMed ID: 22662261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos.
    Ciliberto A; Petrus MJ; Tyson JJ; Sible JC
    Biophys Chem; 2003 Jul; 104(3):573-89. PubMed ID: 12914904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of Xenopus Cdc25C at Ser285 interferes with ability to activate a DNA damage replication checkpoint in pre-midblastula embryos.
    Bulavin DV; Demidenko ZN; Phillips C; Moody SA; Fornace AJ
    Cell Cycle; 2003; 2(3):263-6. PubMed ID: 12775939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription regulation and alternative splicing of an early zygotic gene encoding two structurally distinct zinc finger proteins in Xenopus laevis.
    Bellefroid E; Bourguignon C; Bouwmeester T; Rausch O; Blumberg B; Pieler T
    Mech Dev; 1997 Apr; 63(1):99-108. PubMed ID: 9178260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis.
    Jevtić P; Levy DL
    Sci Rep; 2017 Aug; 7(1):7908. PubMed ID: 28801588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.