These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12593950)

  • 1. Bone response to degradable thermoplastic composite in rabbits.
    Närhi TO; Jansen JA; Jaakkola T; de Ruijter A; Rich J; Seppälä J; Yli-Urpo A
    Biomaterials; 2003 May; 24(10):1697-704. PubMed ID: 12593950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4.
    Aho AJ; Tirri T; Kukkonen J; Strandberg N; Rich J; Seppälä J; Yli-Urpo A
    J Mater Sci Mater Med; 2004 Oct; 15(10):1165-73. PubMed ID: 15516880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly(epsilon-caprolactone-co-DL-lactide) and bioactive glass (S53P4).
    Jaakkola T; Rich J; Tirri T; Närhi T; Jokinen M; Seppälä J; Yli-Urpo A
    Biomaterials; 2004 Feb; 25(4):575-81. PubMed ID: 14607495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of poly(epsilon-caprolactone-co-DL-lactide)/ bioactive glass composites.
    Rich J; Jaakkola T; Tirri T; Närhi T; Yli-Urpo A; Seppälä J
    Biomaterials; 2002 May; 23(10):2143-50. PubMed ID: 11962655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds.
    Meretoja VV; Tirri T; Malin M; Seppälä JV; Närhi TO
    Clin Oral Implants Res; 2014 Feb; 25(2):159-64. PubMed ID: 23106633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone morphogenic protein expression and bone formation are induced by bioactive glass S53P4 scaffolds in vivo.
    Björkenheim R; Strömberg G; Ainola M; Uppstu P; Aalto-Setälä L; Hupa L; Pajarinen J; Lindfors NC
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):847-857. PubMed ID: 30194906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self-reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Niiranen H; Törmälä P; Rokkanen P
    J Biomater Sci Polym Ed; 2005; 16(6):725-44. PubMed ID: 16028593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects.
    Salonius E; Muhonen V; Lehto K; Järvinen E; Pyhältö T; Hannula M; Aula AS; Uppstu P; Haaparanta AM; Rosling A; Kellomäki M; Kiviranta I
    J Tissue Eng Regen Med; 2019 Mar; 13(3):406-415. PubMed ID: 30644174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osseointegration of fiber-reinforced composite implants: histological and ultrastructural observations.
    Ballo AM; Cekic-Nagas I; Ergun G; Lassila L; Palmquist A; Borchardt P; Lausmaa J; Thomsen P; Vallittu PK; Närhi TO
    Dent Mater; 2014 Dec; 30(12):e384-95. PubMed ID: 25182369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite-glass composite as a bone substitute in large metaphyseal cavities in rabbits.
    Suominen EA; Aho AJ; Juhanoja J; Yli-Urpo A
    Int Orthop; 1995; 19(3):167-73. PubMed ID: 7558493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study].
    Urban K; Povýsil C; Spelda S
    Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating.
    Tuusa SM; Peltola MJ; Tirri T; Lassila LV; Vallittu PK
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):149-55. PubMed ID: 17106892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant.
    Jegoux F; Goyenvalle E; Bagot D'arc M; Aguado E; Daculsi G
    Arch Orthop Trauma Surg; 2005 Apr; 125(3):153-9. PubMed ID: 15761734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a bioactive glass fiber reinforced starch-polycaprolactone composite.
    Jukola H; Nikkola L; Gomes ME; Chiellini F; Tukiainen M; Kellomäki M; Chiellini E; Reis RL; Ashammakhi N
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):197-203. PubMed ID: 18386831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive glass fiber/polymeric composites bond to bone tissue.
    Marcolongo M; Ducheyne P; Garino J; Schepers E
    J Biomed Mater Res; 1998 Jan; 39(1):161-70. PubMed ID: 9429107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive glass induced in vitro apatite formation on composite GBR membranes.
    Tirri T; Rich J; Wolke J; Seppälä J; Yli-Urpo A; Närhi TO
    J Mater Sci Mater Med; 2008 Aug; 19(8):2919-23. PubMed ID: 18360801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material.
    Holmbom J; Södergård A; Ekholm E; Märtson M; Kuusilehto A; Saukko P; Penttinen R
    J Biomed Mater Res A; 2005 Nov; 75(2):308-15. PubMed ID: 16059893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer.
    Knowles JC; Hastings GW; Ohta H; Niwa S; Boeree N
    Biomaterials; 1992; 13(8):491-6. PubMed ID: 1321677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.