These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 12594030)
1. Involvement of oxidative stress in the regulation of H(2)S production during ultradian metabolic oscillation of Saccharomyces cerevisiae. Kwak WJ; Kwon GS; Jin I; Kuriyama H; Sohn HY FEMS Microbiol Lett; 2003 Feb; 219(1):99-104. PubMed ID: 12594030 [TBL] [Abstract][Full Text] [Related]
2. The role of amino acids in the regulation of hydrogen sulfide production during ultradian respiratory oscillation of Saccharomyces cerevisiae. Sohn H; Kuriyama H Arch Microbiol; 2001 Jul; 176(1-2):69-78. PubMed ID: 11479705 [TBL] [Abstract][Full Text] [Related]
3. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase. Sohn H; Kuriyama H Yeast; 2001 Jan; 18(2):125-35. PubMed ID: 11169755 [TBL] [Abstract][Full Text] [Related]
4. Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony. Sohn HY; Murray DB; Kuriyama H Yeast; 2000 Sep; 16(13):1185-90. PubMed ID: 10992282 [TBL] [Abstract][Full Text] [Related]
5. Regulation of branched-chain, and sulfur-containing amino acid metabolism by glutathione during ultradian metabolic oscillation of Saccharomyces cerevisiae. Sohn HY; Kum EJ; Kwon GS; Jin I; Kuriyama H J Microbiol; 2005 Aug; 43(4):375-80. PubMed ID: 16145554 [TBL] [Abstract][Full Text] [Related]
6. GLR1 plays an essential role in the homeodynamics of glutathione and the regulation of H2S production during respiratory oscillation of Saccharomyces cerevisiae. Sohn HY; Kum EJ; Kwon GS; Jin I; Adams CA; Kuriyama H Biosci Biotechnol Biochem; 2005 Dec; 69(12):2450-4. PubMed ID: 16377908 [TBL] [Abstract][Full Text] [Related]
7. Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. Wang J; Liu W; Uno T; Tonozuka H; Mitsui K; Tsurugi K FEMS Microbiol Lett; 2000 Aug; 189(1):9-13. PubMed ID: 10913858 [TBL] [Abstract][Full Text] [Related]
8. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis. Li Y; Zhang Y; Liu M; Qin Y; Liu Y Food Microbiol; 2019 Jun; 79():147-155. PubMed ID: 30621870 [TBL] [Abstract][Full Text] [Related]
9. Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Murray DB; Engelen F; Lloyd D; Kuriyama H Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2739-45. PubMed ID: 10537195 [TBL] [Abstract][Full Text] [Related]
10. Clock control of ultradian respiratory oscillation found during yeast continuous culture. Murray DB; Roller S; Kuriyama H; Lloyd D J Bacteriol; 2001 Dec; 183(24):7253-9. PubMed ID: 11717285 [TBL] [Abstract][Full Text] [Related]
11. Evidence for the involvement of the GTS1 gene product in the regulation of biological rhythms in the continuous culture of the yeast Saccharomyces cerevisiae. Wang J; Liu W; Mitsui K; Tsurugi K FEBS Lett; 2001 Jan; 489(1):81-6. PubMed ID: 11231018 [TBL] [Abstract][Full Text] [Related]
12. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae. de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831 [TBL] [Abstract][Full Text] [Related]
13. Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Murray DB; Klevecz RR; Lloyd D Exp Cell Res; 2003 Jul; 287(1):10-5. PubMed ID: 12799177 [TBL] [Abstract][Full Text] [Related]
14. Saccharomyces cerevisiae cultured under aerobic and anaerobic conditions: air-level oxygen stress and protection against stress. Ohmori S; Nawata Y; Kiyono K; Murata H; Tsuboi S; Ikeda M; Akagi R; Morohashi KI; Ono B Biochim Biophys Acta; 1999 Nov; 1472(3):587-94. PubMed ID: 10564773 [TBL] [Abstract][Full Text] [Related]
15. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K FEBS J; 2006 Apr; 273(8):1696-709. PubMed ID: 16623706 [TBL] [Abstract][Full Text] [Related]
16. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Spiropoulos A; Bisson LF Appl Environ Microbiol; 2000 Oct; 66(10):4421-6. PubMed ID: 11010893 [TBL] [Abstract][Full Text] [Related]
17. Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms. Gales G; Penninckx M; Block JC; Leroy P FEMS Yeast Res; 2008 Aug; 8(5):667-75. PubMed ID: 18557947 [TBL] [Abstract][Full Text] [Related]
18. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae. Yoshida S; Imoto J; Minato T; Oouchi R; Kamada Y; Tomita M; Soga T; Yoshimoto H Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605 [TBL] [Abstract][Full Text] [Related]
19. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385 [TBL] [Abstract][Full Text] [Related]
20. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Gergondey R; Garcia C; Marchand CH; Lemaire SD; Camadro JM; Auchère F Biochem J; 2017 Mar; 474(7):1175-1193. PubMed ID: 28167699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]