BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 12594212)

  • 1. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts".
    Braccia A; Villani M; Immerdal L; Niels-Christiansen LL; Nystrøm BT; Hansen GH; Danielsen EM
    J Biol Chem; 2003 May; 278(18):15679-84. PubMed ID: 12594212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions.
    Danielsen EM; Hansen GH
    Biochim Biophys Acta; 2003 Oct; 1617(1-2):1-9. PubMed ID: 14637014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes.
    Hansen GH; Immerdal L; Thorsen E; Niels-Christiansen LL; Nystrøm BT; Demant EJ; Danielsen EM
    J Biol Chem; 2001 Aug; 276(34):32338-44. PubMed ID: 11389144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.
    Radeva G; Sharom FJ
    Biochem J; 2004 May; 380(Pt 1):219-30. PubMed ID: 14769131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional electrophoretic analysis reveals that lipid rafts are intact at physiological temperature.
    Kim KB; Kim SI; Choo HJ; Kim JH; Ko YG
    Proteomics; 2004 Nov; 4(11):3527-35. PubMed ID: 15529409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galectin-2 at the enterocyte brush border of the small intestine.
    Thomsen MK; Hansen GH; Danielsen EM
    Mol Membr Biol; 2009 Aug; 26(5):347-55. PubMed ID: 19657968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelectin: a novel lipid raft-associated protein in the enterocyte brush border.
    Wrackmeyer U; Hansen GH; Seya T; Danielsen EM
    Biochemistry; 2006 Aug; 45(30):9188-97. PubMed ID: 16866365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol sensitivity of detergent resistance: a rapid flow cytometric test for detecting constitutive or induced raft association of membrane proteins.
    Gombos I; Bacsó Z; Detre C; Nagy H; Goda K; Andrásfalvy M; Szabó G; Matkó J
    Cytometry A; 2004 Oct; 61(2):117-26. PubMed ID: 15382146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity.
    Marwali MR; Rey-Ladino J; Dreolini L; Shaw D; Takei F
    Blood; 2003 Jul; 102(1):215-22. PubMed ID: 12637320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The raft-promoting property of virion-associated cholesterol, but not the presence of virion-associated Brij 98 rafts, is a determinant of human immunodeficiency virus type 1 infectivity.
    Campbell S; Gaus K; Bittman R; Jessup W; Crowe S; Mak J
    J Virol; 2004 Oct; 78(19):10556-65. PubMed ID: 15367622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation.
    Zhuang M; Oltean DI; Gómez I; Pullikuth AK; Soberón M; Bravo A; Gill SS
    J Biol Chem; 2002 Apr; 277(16):13863-72. PubMed ID: 11836242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent reveal different lipid and protein domains.
    Eckert GP; Igbavboa U; Müller WE; Wood WG
    Brain Res; 2003 Feb; 962(1-2):144-50. PubMed ID: 12543465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes.
    Hansen GH; Pedersen J; Niels-Christiansen LL; Immerdal L; Danielsen EM
    Biochem J; 2003 Jul; 373(Pt 1):125-32. PubMed ID: 12689332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes.
    Mazzone A; Tietz P; Jefferson J; Pagano R; LaRusso NF
    Hepatology; 2006 Feb; 43(2):287-96. PubMed ID: 16440338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles.
    Kahya N; Brown DA; Schwille P
    Biochemistry; 2005 May; 44(20):7479-89. PubMed ID: 15895991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts.
    Locke D; Liu J; Harris AL
    Biochemistry; 2005 Oct; 44(39):13027-42. PubMed ID: 16185071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid raft organization and function in the small intestinal brush border.
    Danielsen EM; Hansen GH
    J Physiol Biochem; 2008 Dec; 64(4):377-82. PubMed ID: 19391463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane.
    Hansen GH; Rasmussen K; Niels-Christiansen LL; Danielsen EM
    Mol Membr Biol; 2011 Feb; 28(2):136-44. PubMed ID: 21166483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.