These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 1259438)
1. Reversible intramitochondrial release of protein related to unsaturated fatty acids of membranes. Cremel G; Rebel G; Warter JM; Rendon A; Waksman A Arch Biochem Biophys; 1976 Mar; 173(1):255-63. PubMed ID: 1259438 [No Abstract] [Full Text] [Related]
2. Release and binding of protein and enzymes from and to water-shocked vesicles obtained from rat liver mitochondria. Cremel G; Hubert P; Waksman A Physiol Chem Phys; 1975; 7(6):487-94. PubMed ID: 1223917 [TBL] [Abstract][Full Text] [Related]
3. Intramitochondrial intermembranal reversible translocation of aspartate aminotransferase and malate dehydrogenase through the inner mitochondrial membrane. Waksman A; Rendon A; Cremel G; Pellicone C; Goubault de Brugiere JF Biochemistry; 1977 Oct; 16(21):4703-7. PubMed ID: 911785 [TBL] [Abstract][Full Text] [Related]
4. Intramitochondrial intermembranal large amplitude protein movements. I. A possible novel aspect of membrane fluidity. Waksman A; Rendon A Biochimie; 1974; 56(6-7):907-24. PubMed ID: 4374969 [No Abstract] [Full Text] [Related]
5. Release and binding of proteins and enzymes with isolated inner mitochondrial membranes. Rendon A; Waksman A Biochem Biophys Res Commun; 1973 Feb; 50(3):814-9. PubMed ID: 4347529 [No Abstract] [Full Text] [Related]
6. Intramitochondrial release and binding of mitochondrial aspartate aminotransferase and malate dehydrogenase in the presence and absence of monovalent and bivalent cations. Rendon A; Waksman A Biochem Biophys Res Commun; 1971 Mar; 42(6):1214-9. PubMed ID: 5550808 [No Abstract] [Full Text] [Related]
7. Large amplitude protein movement. What functions? Waksman A; Cremel G; Hubert P; Mutet C; Burgun C Biochem Soc Trans; 1984 Jun; 12(3):378-81. PubMed ID: 6734898 [No Abstract] [Full Text] [Related]
8. Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Cederbaum AI; Lieber CS; Beattie DS; Rubin E Arch Biochem Biophys; 1973 Oct; 158(2):763-81. PubMed ID: 4782532 [No Abstract] [Full Text] [Related]
9. Effect of free fatty acid structure on binding to rat liver mitochondria. Spector AA; Brenneman DE Biochim Biophys Acta; 1972 Mar; 260(3):433-8. PubMed ID: 5038260 [No Abstract] [Full Text] [Related]
10. Kinetic studies of the uptake of aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro. Marra E; Passarella S; Casamassima E; Perlino E; Doonan S; Quagliariello E Biochem J; 1985 Jun; 228(2):493-503. PubMed ID: 4015628 [TBL] [Abstract][Full Text] [Related]
11. Effect of ligation of portal vein on liver mitochondrial metabolism. Ozawa K; Takasan H; Kitamura O; Mizukami T; Kamano T J Biochem; 1971 Nov; 70(5):755-64. PubMed ID: 4259390 [No Abstract] [Full Text] [Related]
12. Uptake of aspartate aminotransferase into mitochondria in vitro causes efflux of malate dehydrogenase and vice versa. Passarella S; Marra E; Atlante A; Barile M; Doonan S; Quagliariello E Biochim Biophys Acta; 1990 Mar; 1022(3):273-82. PubMed ID: 2180483 [TBL] [Abstract][Full Text] [Related]
13. The role of metal ions in the uptake of aspartate aminotransferase and malate dehydrogenase into isolated rat liver mitochondria in vitro. Passarella S; Marra E; Atlante A; Doonan S; Quagliariello E FEBS Lett; 1985 Sep; 189(2):235-40. PubMed ID: 4043382 [TBL] [Abstract][Full Text] [Related]
14. Release of matrix proteins from mitochondria to cytosol during the prereplicative phase of liver regeneration. Greco M; Moro L; Pellecchia G; Di Pede S; Guerrieri F FEBS Lett; 1998 May; 427(2):179-82. PubMed ID: 9607307 [TBL] [Abstract][Full Text] [Related]
15. The role of fatty acid binding protein on the metabolism of fatty acids in isolated rat hepatocytes. Wu-Rideout MY; Elson C; Shrago E Biochem Biophys Res Commun; 1976 Aug; 71(3):809-16. PubMed ID: 962957 [No Abstract] [Full Text] [Related]
16. [Effect of insulin and triiodothyronine on liver mitochondria in vivo]. Schäfer G; Nägel L Hoppe Seylers Z Physiol Chem; 1968 Oct; 349(10):1365-77. PubMed ID: 4387017 [No Abstract] [Full Text] [Related]
17. [Pathogenesis of the syndrome "Encephalopathy and fatty degeneration of the viscera". GOT-, GPT-, ALD-, MDH-, and LDH-activity, total lipids, free fatty acids, fatty acid esters, beta-lipoproteins, glycogen and inorganic phosphorus in plasma and in liver homogenates in rats damaged by phosphorus]. Stejskal J; Snopková J; Schejbal V Acta Hepatosplenol; 1970; 17(6):403-10. PubMed ID: 5490557 [No Abstract] [Full Text] [Related]
18. Participation of endogenous fatty acids in Ca2+ release activation from mitochondria. Medvedev BI; Severina EP; Gogvadze VG; Chukhlova EA; Evtodienko YuV Gen Physiol Biophys; 1985 Dec; 4(6):549-56. PubMed ID: 4085784 [TBL] [Abstract][Full Text] [Related]
19. Effect of fluphenazine HCl on R3230AC mammary carcinoma and mammary glands of the rat. Hilf R; Bell C; Goldenberg H; Michel I Cancer Res; 1971 Aug; 31(8):1111-7. PubMed ID: 5095976 [No Abstract] [Full Text] [Related]
20. Lack of correlation between morphological and biochemical parameters in mammary adenocarcinomas of rats induced with 7, 12-dimethylbenz(a)anthracene. Hilf R; Goldenberg H; Gruenstein M; Meranze DR; Shimkin MB Cancer Res; 1970 May; 30(5):1223-30. PubMed ID: 5426927 [No Abstract] [Full Text] [Related] [Next] [New Search]