BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1259440)

  • 1. Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP ADP translocase: kinetic evidence.
    Saks VA; Lipina NV; Smirnov VN; Chazov EI
    Arch Biochem Biophys; 1976 Mar; 173(1):34-41. PubMed ID: 1259440
    [No Abstract]   [Full Text] [Related]  

  • 2. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils].
    Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI
    Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lack of direct coupling between ATP-ADP translocase and creatine phosphokinase in isolated rabbit heart mitochondria.
    Borrebaek B
    Arch Biochem Biophys; 1980 Sep; 203(2):827-9. PubMed ID: 6257181
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions.
    Saks VA; Chernousova GB; Gukovsky DE; Smirnov VN; Chazov EI
    Eur J Biochem; 1975 Sep; 57(1):273-90. PubMed ID: 126157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcium ions on adenine nucleotide translocase from cardiac muscle.
    Beis I; Newsholme EA
    J Mol Cell Cardiol; 1976 Nov; 8(11):863-76. PubMed ID: 1003492
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction.
    Barbour RL; Ribaudo J; Chan SH
    J Biol Chem; 1984 Jul; 259(13):8246-51. PubMed ID: 6330105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle].
    Saks VA; Seppet EK; Liulina NV
    Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenine nucleotide translocase.
    Moreadith RW; Jacobus WE
    J Biol Chem; 1982 Jan; 257(2):899-905. PubMed ID: 6274871
    [No Abstract]   [Full Text] [Related]  

  • 9. Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase.
    Saks VA; Khuchua ZA; Kuznetsov AV
    Biochim Biophys Acta; 1987 Apr; 891(2):138-44. PubMed ID: 3030419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of long chain fatty acyl CoA esters on the adenine nucleotide translocase and myocardial metabolism.
    Shrago E
    Life Sci; 1978 Jan; 22(1):1-5. PubMed ID: 342854
    [No Abstract]   [Full Text] [Related]  

  • 11. [Functional coupling of creatine phosphokinase and adenylate kinase with adenine nucleotide translocase and its role in regulation of heart mitochondrial respiration].
    Dzheia PP; Kal'venas AA; Toleĭkis AI; Prashkiavichius AK
    Biokhimiia; 1983 Sep; 48(9):1471-8. PubMed ID: 6313078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of mitochondrial respiration.
    Tager JM; Groen AK; Wanders RJ; Duszynski J; Westerhoff HV; Vervoorn RC
    Biochem Soc Trans; 1983 Jan; 11(1):40-3. PubMed ID: 6298025
    [No Abstract]   [Full Text] [Related]  

  • 13. Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry.
    Kuznetsov AV; Saks VA
    Biochem Biophys Res Commun; 1986 Jan; 134(1):359-66. PubMed ID: 3004438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence against direct transfer of the adenine nucleotides by the heart mitochondrial creatine kinase-adenine nucleotide translocase complex.
    Vandegaer KM; Jacobus WE
    Biochem Biophys Res Commun; 1982 Nov; 109(2):442-8. PubMed ID: 6295395
    [No Abstract]   [Full Text] [Related]  

  • 15. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria.
    Aliev MK; Saks VA
    Biochim Biophys Acta; 1993 Jul; 1143(3):291-300. PubMed ID: 8329438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation.
    Wilson DF; Nelson D; Erecińska M
    FEBS Lett; 1982 Jul; 143(2):228-32. PubMed ID: 6288461
    [No Abstract]   [Full Text] [Related]  

  • 17. Reconstitution of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP synthesis.
    Kagawa Y
    Biochim Biophys Acta; 1978 Sep; 505(1):45-93. PubMed ID: 30482
    [No Abstract]   [Full Text] [Related]  

  • 18. The adenine-nucleotide exchange in submitochondrial (sonic) particles.
    Klingenberg M
    Eur J Biochem; 1977 Jun; 76(2):553-65. PubMed ID: 891527
    [No Abstract]   [Full Text] [Related]  

  • 19. Cardiac myofibrillar creatine kinase Km is not influenced by contractile protein binding.
    Dowell RT; Fu MC
    Life Sci; 1992; 50(20):1551-9. PubMed ID: 1579047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches.
    Saks V; Kaambre T; Guzun R; Anmann T; Sikk P; Schlattner U; Wallimann T; Aliev M; Vendelin M
    Subcell Biochem; 2007; 46():27-65. PubMed ID: 18652071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.