BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12594619)

  • 1. [Biomechanical properties (compressive strength and compressive pressure at break) of hyaline cartilage under axial load].
    Spahn G; Wittig R
    Zentralbl Chir; 2003 Jan; 128(1):78-82. PubMed ID: 12594619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical behavior of intact and low-grade degenerated cartilage.
    Spahn G; Kahl E; Klinger HM; Mückley T; Günther M; Hofmann GO
    Biomed Tech (Berl); 2007 Apr; 52(2):216-22. PubMed ID: 17408382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge.
    Morita Y; Tomita N; Aoki H; Wakitani S; Tamada Y; Suguro T; Ikeuchi K
    Biomed Mater Eng; 2002; 12(3):291-8. PubMed ID: 12446944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biomechanics of the knee joint].
    Witzel U
    Polim Med; 1993; 23(1-2):19-37. PubMed ID: 8415286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage.
    Guettler JH; Demetropoulos CK; Yang KH; Jurist KA
    Am J Sports Med; 2004 Sep; 32(6):1451-8. PubMed ID: 15310570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical investigation of different internal fixations in medial opening-wedge high tibial osteotomy.
    Spahn G; Mückley T; Kahl E; Hofmann GO
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):272-8. PubMed ID: 16337721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Histomechanical studies on test specimens from hyaline cartilage under compressive loading with regard to rheology (author's transl)].
    Arnold G; Gressner AM; Gross F; Clahsen H; Moll C; Fessel H
    Wien Klin Wochenschr; 1978 Feb; 90(3):97-101. PubMed ID: 622838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic surface amorphous layer lubrication of articular cartilage.
    Graindorge S; Ferrandez W; Jin Z; Ingham E; Grant C; Twigg P; Fisher J
    Med Eng Phys; 2005 Dec; 27(10):836-44. PubMed ID: 16046176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD; Aultman CD; McGill SM; Callaghan JP
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Tensile mechanics of mandibular condylar cartilage].
    Kang H; Bao G; Dong Y; Yi X; Chao Y; Chen M
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Apr; 18(2):85-7. PubMed ID: 12539336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Stress on the ligamentum transversum acetabuli in physiological stress on the hip joint].
    Löhe F; Eckstein F; Putz R
    Unfallchirurg; 1994 Sep; 97(9):445-9. PubMed ID: 7973747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanical, morphologic, and histochemical properties of the costal cartilages in children with pectus excavatum.
    Feng J; Hu T; Liu W; Zhang S; Tang Y; Chen R; Jiang X; Wei F
    J Pediatr Surg; 2001 Dec; 36(12):1770-6. PubMed ID: 11733904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromotion at the fracture site after tibial nailing with four unreamed small-diameter nails--a biomechanical study using a distal tibia fracture model.
    Schüller M; Weninger P; Tschegg E; Jamek M; Redl H; Stanzl-Tschegg S
    J Trauma; 2009 May; 66(5):1391-7. PubMed ID: 19430244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeability of human medial collateral ligament in compression transverse to the collagen fiber direction.
    Weiss JA; Maakestad BJ
    J Biomech; 2006; 39(2):276-83. PubMed ID: 16321629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo cartilage deformation after different types of activity and its dependence on physical training status.
    Eckstein F; Lemberger B; Gratzke C; Hudelmaier M; Glaser C; Englmeier KH; Reiser M
    Ann Rheum Dis; 2005 Feb; 64(2):291-5. PubMed ID: 15647438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression.
    Shirazi R; Shirazi-Adl A; Hurtig M
    J Biomech; 2008 Dec; 41(16):3340-8. PubMed ID: 19022449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.