These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12594619)

  • 41. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?
    Barker MK; Seedhom BB
    Rheumatology (Oxford); 2001 Mar; 40(3):274-84. PubMed ID: 11285374
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Articular cartilage compressive stiffness following oophorectomy or treatment with 17beta-estradiol in young postpubertal rabbits.
    Räsänen T; Messner K
    Acta Obstet Gynecol Scand; 1999 May; 78(5):357-62. PubMed ID: 10326876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Digital speckle correlation method: a technique to evaluate the tensile property of articular cartilage].
    Dai RC; Yao XF; Yuan LQ; Xu MQ; Liao EY; Tan LH
    Zhonghua Yi Xue Za Zhi; 2004 Aug; 84(15):1265-9. PubMed ID: 15387963
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical implications of degenerative joint disease in the apophyseal joints of human thoracic and lumbar vertebrae.
    Brown KR; Pollintine P; Adams MA
    Am J Phys Anthropol; 2008 Jul; 136(3):318-26. PubMed ID: 18324643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quasi-steady-state displacement response of whole human cadaveric knees in a MRI scanner.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2009 Aug; 131(8):081004. PubMed ID: 19604016
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cartilage collagen matrix reorientation and displacement in response to surface loading.
    Moger CJ; Arkill KP; Barrett R; Bleuet P; Ellis RE; Green EM; Winlove CP
    J Biomech Eng; 2009 Mar; 131(3):031008. PubMed ID: 19154067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of stress on knee cartilage during kneeling and standing using finite element models.
    Wang Y; Fan Y; Zhang M
    Med Eng Phys; 2014 Apr; 36(4):439-47. PubMed ID: 24508046
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A technique for measuring the compressive modulus of articular cartilage under physiological loading rates with preliminary results.
    Shepherd DE; Seedhom BB
    Proc Inst Mech Eng H; 1997; 211(2):155-65. PubMed ID: 9184456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional properties of native and tissue-engineered cartilage toward understanding the pathogenesis of chondral lesions at the knee: A bovine cadaveric study.
    Paschos NK; Lim N; Hu JC; Athanasiou KA
    J Orthop Res; 2017 Nov; 35(11):2452-2464. PubMed ID: 28294398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical anisotropy of the human knee articular cartilage in compression.
    Jurvelin JS; Buschmann MD; Hunziker EB
    Proc Inst Mech Eng H; 2003; 217(3):215-9. PubMed ID: 12807162
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of cartilage deformation on the laxity of the knee joint.
    Huss RA; Holstein H; O'Connor JJ
    Proc Inst Mech Eng H; 1999; 213(1):19-32. PubMed ID: 10087901
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effects of stress level on the biomechanical behavior of the temporomandibular joint disc in domestic pigs].
    Bao G; Kang H; Dong Y; Zhu R; Chao Y; Yi X; Chen M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):418-20. PubMed ID: 11211829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Biomechanical properties of the sacroiliac joint].
    Miura H
    Nihon Seikeigeka Gakkai Zasshi; 1987 Oct; 61(10):1093-105. PubMed ID: 3437175
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Compressive loads on the human knee joint (author's transl)].
    Ehler E; Bockstedt S; Müller O
    Anat Anz; 1978; 143(1):130-5. PubMed ID: 637308
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of enforced exercise on biomechanical properties of the anterior cruciate ligament of bipedal rats.
    Sakuma K; Mizuta H; Takagi K; Takashima K
    Nihon Seikeigeka Gakkai Zasshi; 1992 Nov; 66(11):1146-55. PubMed ID: 1484234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of stress magnitude on water loss and chondrocyte viability in impacted articular cartilage.
    Milentijevic D; Helfet DL; Torzilli PA
    J Biomech Eng; 2003 Oct; 125(5):594-601. PubMed ID: 14618918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The axial stability of the femur after harvest of the medial femoral condyle corticocancellous flap: a biomechanical study of composite femur models.
    Katz RD; Parks BG; Higgins JP
    Microsurgery; 2012 Mar; 32(3):213-8. PubMed ID: 22371138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconsideration on the use of elastic models to predict the instantaneous load response of the knee joint.
    Li LP; Gu KB
    Proc Inst Mech Eng H; 2011 Sep; 225(9):888-96. PubMed ID: 22070026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Traumatic bone deformation in childhood, adolescence and early adulthood--pathomechanics and review of the literature].
    Höcker K
    Unfallchirurg; 1995 Oct; 98(10):540-4. PubMed ID: 7502091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Indentation stiffness of young canine knee articular cartilage--influence of strenuous joint loading.
    Jurvelin J; Kiviranta I; Säämänen AM; Tammi M; Helminen HJ
    J Biomech; 1990; 23(12):1239-46. PubMed ID: 2292603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.