BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 12594915)

  • 1. Genomes at the interface between bacteria and organelles.
    Douglas AE; Raven JA
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):5-17; discussion 517-8. PubMed ID: 12594915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.
    Martin W; Rujan T; Richly E; Hansen A; Cornelsen S; Lins T; Leister D; Stoebe B; Hasegawa M; Penny D
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12246-51. PubMed ID: 12218172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.
    Ran L; Larsson J; Vigil-Stenman T; Nylander JA; Ininbergs K; Zheng WW; Lapidus A; Lowry S; Haselkorn R; Bergman B
    PLoS One; 2010 Jul; 5(7):e11486. PubMed ID: 20628610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes.
    Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H
    BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A census of nuclear cyanobacterial recruits in the plant kingdom.
    Makai S; Li X; Hussain J; Cui C; Wang Y; Chen M; Yang Z; Ma C; Guo AY; Zhou Y; Chang J; Yang G; He G
    PLoS One; 2015; 10(3):e0120527. PubMed ID: 25794152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes.
    Maier UG; Zauner S; Woehle C; Bolte K; Hempel F; Allen JF; Martin WF
    Genome Biol Evol; 2013; 5(12):2318-29. PubMed ID: 24259312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids.
    Ponce-Toledo RI; Deschamps P; López-García P; Zivanovic Y; Benzerara K; Moreira D
    Curr Biol; 2017 Feb; 27(3):386-391. PubMed ID: 28132810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista.
    Nozaki H; Matsuzaki M; Misumi O; Kuroiwa H; Hasegawa M; Higashiyama T; Shin-I T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2004 Jul; 59(1):103-13. PubMed ID: 15383913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids.
    Gross J; Meurer J; Bhattacharya D
    BMC Evol Biol; 2008 Apr; 8():117. PubMed ID: 18433492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular basis of symbiogenic evolution: from free-living bacteria towards organelles].
    Provorov NA
    Zh Obshch Biol; 2005; 66(5):371-88. PubMed ID: 16245569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?
    Huang J; Gogarten JP
    Genome Biol; 2007; 8(6):R99. PubMed ID: 17547748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.
    Hadariová L; Vesteg M; Hampl V; Krajčovič J
    Curr Genet; 2018 Apr; 64(2):365-387. PubMed ID: 29026976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing evolution: gene transfer from plastids to the nucleus.
    Bock R; Timmis JN
    Bioessays; 2008 Jun; 30(6):556-66. PubMed ID: 18478535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins.
    Bodył A; Mackiewicz P; Stiller JW
    Plant Biol (Stuttg); 2010 Jul; 12(4):639-49. PubMed ID: 20636907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ancient invasions: from endosymbionts to organelles.
    Dyall SD; Brown MT; Johnson PJ
    Science; 2004 Apr; 304(5668):253-7. PubMed ID: 15073369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRNA functional signatures classify plastids as late-branching cyanobacteria.
    Lawrence TJ; Amrine KC; Swingley WD; Ardell DH
    BMC Evol Biol; 2019 Dec; 19(1):224. PubMed ID: 31818253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.