These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 12594980)

  • 1. Generating dynamic simulations of movement using computed muscle control.
    Thelen DG; Anderson FC; Delp SL
    J Biomech; 2003 Mar; 36(3):321-8. PubMed ID: 12594980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling.
    Koehle MJ; Hull ML
    J Biomech Eng; 2010 Jan; 132(1):011007. PubMed ID: 20524745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
    Fregly BJ; Zajac FE
    J Biomech; 1996 Jan; 29(1):81-90. PubMed ID: 8839020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations.
    Hakansson NA; Hull ML
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithm to compute muscle excitation patterns that accurately track kinematics using a hybrid of numerical integration and optimization.
    Inai T; Takabayashi T; Edama M; Kubo M
    J Biomech; 2020 Jun; 107():109836. PubMed ID: 32517864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.
    Ehsani H; Rostami M; Gudarzi M
    Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):306-319. PubMed ID: 25761607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical analysis of preferred pedaling rate selection in endurance cycling.
    Neptune RR; Hull ML
    J Biomech; 1999 Apr; 32(4):409-15. PubMed ID: 10213031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a 3-D model to predict knee joint loading during dynamic movement.
    McLean SG; Su A; van den Bogert AJ
    J Biomech Eng; 2003 Dec; 125(6):864-74. PubMed ID: 14986412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamic model of the knee and lower limb for simulating rising movements.
    Shelburne KB; Pandy MG
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):149-59. PubMed ID: 12186724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic optimization: inverse analysis for the Yurchenko layout vault in women's artistic gymnastics.
    Koh MT; Jennings LS
    J Biomech; 2003 Aug; 36(8):1177-83. PubMed ID: 12831744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sloped muscle excitation waveforms improve the accuracy of forward dynamic simulations.
    Camilleri MJ; Hull ML; Hakansson N
    J Biomech; 2007; 40(7):1423-32. PubMed ID: 16949082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor strategy for pedaling: muscle groups and biomechanical functions.
    Raasch CC; Zajac FE
    J Neurophysiol; 1999 Aug; 82(2):515-25. PubMed ID: 10444651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical genetic algorithm versus static optimization-investigation of elbow flexion and extension movements.
    Raikova RT; Aladjov HTs
    J Biomech; 2002 Aug; 35(8):1123-35. PubMed ID: 12126671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle activity patterns altered during pedaling at different body orientations.
    Brown DA; Kautz SA; Dairaghi CA
    J Biomech; 1996 Oct; 29(10):1349-56. PubMed ID: 8884480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does a two-element muscle model offer advantages when estimating ankle plantar flexor forces during human cycling?
    Lai AKM; Arnold AS; Biewener AA; Dick TJM; Wakeling JM
    J Biomech; 2018 Feb; 68():6-13. PubMed ID: 29287843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force enhancement and force depression in a modified muscle model used for muscle activation prediction.
    Kosterina N; Wang R; Eriksson A; Gutierrez-Farewik EM
    J Electromyogr Kinesiol; 2013 Aug; 23(4):759-65. PubMed ID: 23561824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.