These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 12594980)

  • 21. A novel two-stage framework for musculoskeletal dynamic modeling: an application to multifingered hand movement.
    Li K; Zhang X
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1949-57. PubMed ID: 19272972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance criteria for generating predictive optimal control simulations of bicycle pedaling.
    Gidley AD; Marsh AP; Umberger BR
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):11-20. PubMed ID: 30398070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models.
    Halloran JP; Erdemir A; van den Bogert AJ
    J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An optimization algorithm for human joint angle time-history generation using external force data.
    Mazzà C; Cappozzo A
    Ann Biomed Eng; 2004 May; 32(5):764-72. PubMed ID: 15171630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling.
    Rankin JW; Neptune RR
    J Biomech; 2008; 41(7):1494-502. PubMed ID: 18395213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle stimulation waveform timing patterns for upper and lower leg muscle groups to increase muscular endurance in functional electrical stimulation pedaling using a forward dynamic model.
    Hakansson NA; Hull ML
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2263-70. PubMed ID: 19380265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization algorithm performance in determining optimal controls in human movement analyses.
    Neptune RR
    J Biomech Eng; 1999 Apr; 121(2):249-52. PubMed ID: 10211461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.
    Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M
    J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The association between negative muscle work and pedaling rate.
    Neptune RR; Herzog W
    J Biomech; 1999 Oct; 32(10):1021-6. PubMed ID: 10476840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling.
    Ting LH; Kautz SA; Brown DA; Zajac FE
    J Neurophysiol; 2000 Jun; 83(6):3351-65. PubMed ID: 10848554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electromyographic analysis of pedaling: a review.
    Hug F; Dorel S
    J Electromyogr Kinesiol; 2009 Apr; 19(2):182-98. PubMed ID: 18093842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding muscle coordination of the human leg with dynamical simulations.
    Zajac FE
    J Biomech; 2002 Aug; 35(8):1011-8. PubMed ID: 12126660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2000 Feb; 33(2):155-64. PubMed ID: 10653028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatigue effects on the coordinative pattern during cycling: kinetics and kinematics evaluation.
    Bini RR; Diefenthaeler F; Mota CB
    J Electromyogr Kinesiol; 2010 Feb; 20(1):102-7. PubMed ID: 19028111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An EMG-driven model applied for predicting metabolic energy consumption during movement.
    Bisi MC; Stagni R; Houdijk H; Gnudi G
    J Electromyogr Kinesiol; 2011 Dec; 21(6):1074-80. PubMed ID: 21840224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations.
    Lilly JH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):333-9. PubMed ID: 14518798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The necessity of physiological muscle parameters for computing the muscle forces: application to lower extremity loading during pedalling.
    Cadová M; Vilímek M
    Acta Bioeng Biomech; 2009; 11(3):59-64. PubMed ID: 20131752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.