BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12595094)

  • 1. Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine.
    Argirov OK; Lin B; Olesen P; Ortwerth BJ
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):235-44. PubMed ID: 12595094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid.
    Reihl O; Lederer MO; Schwack W
    Carbohydr Res; 2004 Feb; 339(3):483-91. PubMed ID: 15013385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.
    Dai Z; Nemet I; Shen W; Monnier VM
    Arch Biochem Biophys; 2007 Jul; 463(1):78-88. PubMed ID: 17466255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine) is a newly identified advanced glycation end product in cataractous and aged human lenses.
    Argirov OK; Lin B; Ortwerth BJ
    J Biol Chem; 2004 Feb; 279(8):6487-95. PubMed ID: 14634019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel advanced glycation end product derived from lactaldehyde.
    Fujimoto S; Murakami Y; Miyake H; Hayase F; Watanabe H
    Biosci Biotechnol Biochem; 2019 Jun; 83(6):1136-1145. PubMed ID: 30822216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Pyridinium Cross-Link Structures Derived from Glycolaldehyde and Glyoxal.
    Rau R; Glomb MA
    J Agric Food Chem; 2022 Apr; 70(14):4434-4444. PubMed ID: 35348319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-oxidative degradation of ascorbic acid at physiological conditions.
    Simpson GL; Ortwerth BJ
    Biochim Biophys Acta; 2000 Apr; 1501(1):12-24. PubMed ID: 10727845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification and Cross-Linking of Proteins by Glycolaldehyde and Glyoxal: A Model System.
    Klaus A; Rau R; Glomb MA
    J Agric Food Chem; 2018 Oct; 66(41):10835-10843. PubMed ID: 30296075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin.
    Ahmed N; Argirov OK; Minhas HS; Cordeiro CA; Thornalley PJ
    Biochem J; 2002 May; 364(Pt 1):1-14. PubMed ID: 11988070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of glycated and ascorbylated proteins by gas chromatography-mass spectrometry.
    Hasenkopf K; Rönner B; Hiller H; Pischetsrieder M
    J Agric Food Chem; 2002 Sep; 50(20):5697-703. PubMed ID: 12236701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.
    Voziyan PA; Metz TO; Baynes JW; Hudson BG
    J Biol Chem; 2002 Feb; 277(5):3397-403. PubMed ID: 11729198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and Chemistry of Novel Protein Oxidation Markers in Vivo.
    Henning C; Liehr K; Girndt M; Ulrich C; Glomb MA
    J Agric Food Chem; 2018 May; 66(18):4692-4701. PubMed ID: 29707946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic acid glycation: the reactions of L-threose in lens tissue.
    Ortwerth BJ; Speaker JA; Prabhakaram M; Lopez MG; Li EY; Feather MS
    Exp Eye Res; 1994 Jun; 58(6):665-74. PubMed ID: 7925706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine side-chain modification that occurs during copper-catalysed azide-alkyne click reactions resembles an advanced glycation end product.
    Conibear AC; Farbiarz K; Mayer RL; Matveenko M; Kählig H; Becker CF
    Org Biomol Chem; 2016 Jul; 14(26):6205-11. PubMed ID: 27282129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of advanced glycation end product-associated protein cross-linking.
    Lehman TD; Ortwerth BJ
    Biochim Biophys Acta; 2001 Feb; 1535(2):110-9. PubMed ID: 11341999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid.
    Jung CH; Wells WW
    Arch Biochem Biophys; 1998 Jul; 355(1):9-14. PubMed ID: 9647661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced glycation end products induce crosslinking of collagen in vitro.
    Sajithlal GB; Chithra P; Chandrakasan G
    Biochim Biophys Acta; 1998 Sep; 1407(3):215-24. PubMed ID: 9748585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transketolase A from E. coli Significantly Suppresses Protein Glycation by Glycolaldehyde and Glyoxal in Vitro.
    Klaus A; Pfirrmann T; Glomb MA
    J Agric Food Chem; 2017 Sep; 65(37):8196-8202. PubMed ID: 28880548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate carbonyl mobility--the key process in the formation of alpha-dicarbonyl intermediates.
    Reihl O; Rothenbacher TM; Lederer MO; Schwack W
    Carbohydr Res; 2004 Jun; 339(9):1609-18. PubMed ID: 15183735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.