BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12595243)

  • 1. Activity blockade increases the number of functional synapses in the hippocampus of newborn rats.
    Lauri SE; Lamsa K; Pavlov I; Riekki R; Johnson BE; Molnar E; Rauvala H; Taira T
    Mol Cell Neurosci; 2003 Jan; 22(1):107-17. PubMed ID: 12595243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus.
    Vara H; Martínez B; Santos A; Colino A
    Neuroscience; 2002; 110(1):19-28. PubMed ID: 11882369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creation of AMPA-silent synapses in the neonatal hippocampus.
    Xiao MY; Wasling P; Hanse E; Gustafsson B
    Nat Neurosci; 2004 Mar; 7(3):236-43. PubMed ID: 14966524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynaptic contributions to hippocampal network hyperexcitability induced by chronic activity blockade in vivo.
    Galvan CD; Wenzel JH; Dineley KT; Lam TT; Schwartzkroin PA; Sweatt JD; Swann JW
    Eur J Neurosci; 2003 Oct; 18(7):1861-72. PubMed ID: 14622219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.
    Nakayama K; Kiyosue K; Taguchi T
    J Neurosci; 2005 Apr; 25(16):4040-51. PubMed ID: 15843606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release.
    Lauri SE; Vesikansa A; Segerstråle M; Collingridge GL; Isaac JT; Taira T
    Neuron; 2006 May; 50(3):415-29. PubMed ID: 16675396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse.
    DiGregorio DA; Nusser Z; Silver RA
    Neuron; 2002 Aug; 35(3):521-33. PubMed ID: 12165473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors.
    Mameli M; Carta M; Partridge LD; Valenzuela CF
    J Neurosci; 2005 Mar; 25(9):2285-94. PubMed ID: 15745954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin promotes functional induction of silent synapses in differentiating rat neocortical neurons.
    Plitzko D; Rumpel S; Gottmann K
    Eur J Neurosci; 2001 Oct; 14(8):1412-5. PubMed ID: 11703469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endosomal protein NEEP21 regulates AMPA receptor-mediated synaptic transmission and plasticity in the hippocampus.
    Alberi S; Boda B; Steiner P; Nikonenko I; Hirling H; Muller D
    Mol Cell Neurosci; 2005 Jun; 29(2):313-9. PubMed ID: 15911354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors.
    Liao D; Scannevin RH; Huganir R
    J Neurosci; 2001 Aug; 21(16):6008-17. PubMed ID: 11487624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent pre- and postsynaptic distribution of AMPA receptors at synapses in CA3 stratum radiatum of hippocampal slice cultures compared with intact brain.
    Fabian-Fine R; Volknandt W; Fine A; Stewart MG
    Eur J Neurosci; 2000 Oct; 12(10):3687-700. PubMed ID: 11029638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein interacting with C kinase 1 (PICK1) and GluR2 are associated with presynaptic plasma membrane and vesicles in hippocampal excitatory synapses.
    Haglerød C; Kapic A; Boulland JL; Hussain S; Holen T; Skare O; Laake P; Ottersen OP; Haug FM; Davanger S
    Neuroscience; 2009 Jan; 158(1):242-52. PubMed ID: 19071197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive activation of protein kinase A induces slow and persistent potentiation associated with synaptogenesis in cultured hippocampus.
    Tominaga-Yoshino K; Kondo S; Tamotsu S; Ogura A
    Neurosci Res; 2002 Dec; 44(4):357-67. PubMed ID: 12445624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homeostatically regulated spontaneous neuronal discharges protect developing cerebral cortex networks from becoming hyperactive following prolonged blockade of excitatory synaptic receptors.
    Corner MA; Baker RE; van Pelt J
    Brain Res; 2006 Aug; 1106(1):40-45. PubMed ID: 16836981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons.
    Cossart R; Epsztein J; Tyzio R; Becq H; Hirsch J; Ben-Ari Y; Crépel V
    Neuron; 2002 Jul; 35(1):147-59. PubMed ID: 12123615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coincidence in dendritic clustering and synaptic targeting of homer proteins and NMDA receptor complex proteins NR2B and PSD95 during development of cultured hippocampal neurons.
    Shiraishi Y; Mizutani A; Mikoshiba K; Furuichi T
    Mol Cell Neurosci; 2003 Feb; 22(2):188-201. PubMed ID: 12676529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.