BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12595258)

  • 1. Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold.
    Bauer S; Kemter K; Bacher A; Huber R; Fischer M; Steinbacher S
    J Mol Biol; 2003 Mar; 326(5):1463-73. PubMed ID: 12595258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch.
    Karthikeyan S; Zhou Q; Mseeh F; Grishin NV; Osterman AL; Zhang H
    Structure; 2003 Mar; 11(3):265-73. PubMed ID: 12623014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural basis of riboflavin binding to Schizosaccharomyces pombe 6,7-dimethyl-8-ribityllumazine synthase.
    Gerhardt S; Haase I; Steinbacher S; Kaiser JT; Cushman M; Bacher A; Huber R; Fischer M
    J Mol Biol; 2002 May; 318(5):1317-29. PubMed ID: 12083520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the synthesis of FMN in prokaryotic organisms.
    Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes.
    Serrano A; Frago S; Velázquez-Campoy A; Medina M
    Int J Mol Sci; 2012 Nov; 13(11):14492-517. PubMed ID: 23203077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes.
    Herguedas B; Martínez-Júlvez M; Frago S; Medina M; Hermoso JA
    J Mol Biol; 2010 Jul; 400(2):218-30. PubMed ID: 20471397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements.
    Sebastián M; Lira-Navarrete E; Serrano A; Marcuello C; Velázquez-Campoy A; Lostao A; Hurtado-Guerrero R; Medina M; Martínez-Júlvez M
    Sci Rep; 2017 Aug; 7(1):7609. PubMed ID: 28790457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding-induced conformational changes in riboflavin kinase: structural basis for the ordered mechanism.
    Karthikeyan S; Zhou Q; Osterman AL; Zhang H
    Biochemistry; 2003 Nov; 42(43):12532-8. PubMed ID: 14580199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights into the mechanism of substrate binding and catalysis of bifunctional FAD synthetase from Staphylococcus aureus.
    Lohithakshan A; Narayanasamy R; Potteth US; Keshava S; Nagaraja V; Usharani D; Kumar R
    Biochimie; 2021 Mar; 182():217-227. PubMed ID: 33516756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of an ATP-dependent carboxylase, dethiobiotin synthetase, based on crystallographic studies of complexes with substrates and a reaction intermediate.
    Huang W; Jia J; Gibson KJ; Taylor WS; Rendina AR; Schneider G; Lindqvist Y
    Biochemistry; 1995 Sep; 34(35):10985-95. PubMed ID: 7669756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key residues at the riboflavin kinase catalytic site of the bifunctional riboflavin kinase/FMN adenylyltransferase from Corynebacterium ammoniagenes.
    Serrano A; Frago S; Herguedas B; Martínez-Júlvez M; Velázquez-Campoy A; Medina M
    Cell Biochem Biophys; 2013 Jan; 65(1):57-68. PubMed ID: 22892871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystal structure of the Desulfovibrio vulgaris (Hildenborough) apoflavodoxin-riboflavin complex.
    Walsh MA; McCarthy A; O'Farrell PA; McArdle P; Cunningham PD; Mayhew SG; Higgins TM
    Eur J Biochem; 1998 Dec; 258(2):362-71. PubMed ID: 9874201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.
    Kraft L; Sprenger GA; Lindqvist Y
    J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of charge transfer complex formation by riboflavin bound to 6,7-dimethyl-8-ribityllumazine synthase.
    Koch M; Breithaupt C; GerhardtHaase S; Weber S; Cushman M; Huber R; Bacher A; Fischer M
    Eur J Biochem; 2004 Aug; 271(15):3208-14. PubMed ID: 15265040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insight into AMPK regulation: ADP comes into play.
    Jin X; Townley R; Shapiro L
    Structure; 2007 Oct; 15(10):1285-95. PubMed ID: 17937917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae mitochondria can synthesise FMN and FAD from externally added riboflavin and export them to the extramitochondrial phase.
    Pallotta ML; Brizio C; Fratianni A; De Virgilio C; Barile M; Passarella S
    FEBS Lett; 1998 May; 428(3):245-9. PubMed ID: 9654142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-induced structural changes in adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum.
    Lansdon EB; Segel IH; Fisher AJ
    Biochemistry; 2002 Nov; 41(46):13672-80. PubMed ID: 12427029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposed steady-state kinetic mechanism for Corynebacterium ammoniagenes FAD synthetase produced by Escherichia coli.
    Efimov I; Kuusk V; Zhang X; McIntire WS
    Biochemistry; 1998 Jul; 37(27):9716-23. PubMed ID: 9657684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.