BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12595529)

  • 1. Interaction of Tl+ with product complexes of fructose-1,6-bisphosphatase.
    Choe JY; Nelson SW; Fromm HJ; Honzatko RB
    J Biol Chem; 2003 May; 278(18):16008-14. PubMed ID: 12595529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase.
    Villeret V; Huang S; Fromm HJ; Lipscomb WN
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8916-20. PubMed ID: 7568043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of fructose 1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes.
    Choe JY; Fromm HJ; Honzatko RB
    Biochemistry; 2000 Jul; 39(29):8565-74. PubMed ID: 10913263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and mechanisms of activation and inhibition of porcine liver fructose-1,6-bisphosphatase by monovalent cations.
    Zhang R; Villeret V; Lipscomb WN; Fromm HJ
    Biochemistry; 1996 Mar; 35(9):3038-43. PubMed ID: 8608143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase.
    Zhang Y; Liang JY; Huang S; Ke H; Lipscomb WN
    Biochemistry; 1993 Feb; 32(7):1844-57. PubMed ID: 8382525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metaphosphate in the active site of fructose-1,6-bisphosphatase.
    Choe JY; Iancu CV; Fromm HJ; Honzatko RB
    J Biol Chem; 2003 May; 278(18):16015-20. PubMed ID: 12595528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of cooperativity in the activation of fructose-1,6-bisphosphatase by Mg2+.
    Nelson SW; Honzatko RB; Fromm HJ
    J Biol Chem; 2004 Apr; 279(18):18481-7. PubMed ID: 14978036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan fluorescence reveals the conformational state of a dynamic loop in recombinant porcine fructose-1,6-bisphosphatase.
    Nelson SW; Iancu CV; Choe JY; Honzatko RB; Fromm HJ
    Biochemistry; 2000 Sep; 39(36):11100-6. PubMed ID: 10998248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of rabbit liver fructose-1,6-bisphosphatase by metals, nucleotides, and fructose 2,6-bisphosphate as determined from fluorescence studies.
    Scheffler JE; Fromm HJ
    Biochemistry; 1986 Oct; 25(21):6659-65. PubMed ID: 3024716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose 1,6-bisphosphatase in rat liver cytosol: interactions between the effects of K+, Zn2+, Mn2+, and fructose 2,6-bisphosphate as measured in a steady-state assay.
    Mörikofer-Zwez S
    Arch Biochem Biophys; 1983 Jun; 223(2):572-83. PubMed ID: 6305284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities.
    Shyur LF; Aleshin AE; Fromm HJ
    Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of fructose-1,6-bisphosphatase by a new class of allosteric effectors.
    Choe JY; Nelson SW; Arienti KL; Axe FU; Collins TL; Jones TK; Kimmich RD; Newman MJ; Norvell K; Ripka WC; Romano SJ; Short KM; Slee DH; Fromm HJ; Honzatko RB
    J Biol Chem; 2003 Dec; 278(51):51176-83. PubMed ID: 14530289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+.
    Conyers GB; Wu G; Bessman MJ; Mildvan AS
    Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of Zn2+ to rat liver fructose-1,6-bisphosphatase and its effect on the catalytic properties.
    Pedrosa FO; Pontremoli S; Horecker BL
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2742-5. PubMed ID: 197519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependent allosteric effects of monovalent cations on rabbit liver fructose-1,6-bisphosphatase.
    Nakashima K; Tuboi S
    J Biol Chem; 1976 Jul; 251(14):4315-21. PubMed ID: 180024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual role of Zn2+ as inhibitor and activator of fructose 1,6-bisphosphatase of rat liver.
    Tejwani GA; Pedrosa FO; Pontremoli S; Horecker BL
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2692-5. PubMed ID: 8778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycine 122 is essential for cooperativity and binding of Mg2+ to porcine fructose-1,6-bisphosphatase.
    Zhang R; Chen L; Villeret V; Fromm HJ
    J Biol Chem; 1995 Jan; 270(1):54-8. PubMed ID: 7814419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding and kinetic data for rabbit liver fructose-1,6-bisphosphatase with Zn2+ as cofactor.
    Benkovic PA; Caperelli CA; de Maine M; Benkovic SJ
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2185-9. PubMed ID: 209458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of fructose-1,6-bisphosphatases by monovalent cations and its relationship with a fructose-2,6-bisphosphate allosteric site.
    Slebe JC; Reyes A; Hubert E
    Arch Biol Med Exp; 1985 Dec; 18(3-4):309-15. PubMed ID: 3019247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of arginine 276 to methionine changes Mg2+ cooperativity and the kinetic mechanism of fructose-1,6-bisphosphatase.
    Zhang R; Fromm HJ
    Biochemistry; 1995 Jun; 34(25):8190-5. PubMed ID: 7794933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.