BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 12595556)

  • 21. Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase.
    Julias JG; Ferris AL; Boyer PL; Hughes SH
    J Virol; 2001 Jul; 75(14):6537-46. PubMed ID: 11413321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities.
    Wilhelm M; Boutabout M; Wilhelm FX
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):337-42. PubMed ID: 10816427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homodimeric reverse transcriptases from rous sarcoma virus mutated within the polymerase or RNase H active site of one subunit are active.
    Werner S; Wöhrl BM
    Eur J Biochem; 2000 Aug; 267(15):4740-4. PubMed ID: 10903507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chimeric HIV-1 and feline immunodeficiency virus reverse transcriptases: critical role of the p51 subunit in the structural integrity of heterodimeric lentiviral DNA polymerases.
    Amacker M; Hübscher U
    J Mol Biol; 1998 May; 278(4):757-65. PubMed ID: 9614940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.
    Matamoros T; Barrioluengo V; Abia D; Menéndez-Arias L
    Biochemistry; 2013 Dec; 52(51):9318-28. PubMed ID: 24303887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity.
    Tisdale M; Schulze T; Larder BA; Moelling K
    J Gen Virol; 1991 Jan; 72 ( Pt 1)():59-66. PubMed ID: 1703563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase.
    Boyer PL; Stenbak CR; Clark PK; Linial ML; Hughes SH
    J Virol; 2004 Jun; 78(12):6112-21. PubMed ID: 15163704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3,5,8-Trihydroxy-4-quinolone, a novel natural inhibitor of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2.
    Loya S; Rudi A; Tal R; Kashman Y; Loya Y; Hizi A
    Arch Biochem Biophys; 1994 Mar; 309(2):315-22. PubMed ID: 7510944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNase H cleavage of tRNAPro mediated by M-MuLV and HIV-1 reverse transcriptases.
    Smith CM; Potts WB; Smith JS; Roth MJ
    Virology; 1997 Mar; 229(2):437-46. PubMed ID: 9126256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subunit-specific mutational analysis of residue N348 in HIV-1 reverse transcriptase.
    Radzio J; Sluis-Cremer N
    Retrovirology; 2011 Aug; 8():69. PubMed ID: 21859446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The DNA-dependent and RNA-dependent DNA polymerase activities of the reverse transcriptases of human immunodeficiency viruses types 1 and 2.
    Shaharabany M; Hizi A
    AIDS Res Hum Retroviruses; 1991 Nov; 7(11):883-8. PubMed ID: 1722105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase.
    Smith JS; Gritsman K; Roth MJ
    J Virol; 1994 Sep; 68(9):5721-9. PubMed ID: 7520094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intramolecular chimeras of the p51 subunit between HIV-1 and FIV reverse transcriptases suggest a stabilizing function for the p66 subunit in the heterodimeric enzyme.
    Tasara T; Amacker M; Hübscher U
    Biochemistry; 1999 Feb; 38(5):1633-42. PubMed ID: 9931031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase.
    Tachedjian G; Radzio J; Sluis-Cremer N
    Proteins; 2005 Jul; 60(1):5-13. PubMed ID: 15852304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers.
    Held DM; Kissel JD; Thacker SJ; Michalowski D; Saran D; Ji J; Hardy RW; Rossi JJ; Burke DH
    J Virol; 2007 May; 81(10):5375-84. PubMed ID: 17329328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insertion of a small peptide of six amino acids into the beta7-beta8 loop of the p51 subunit of HIV-1 reverse transcriptase perturbs the heterodimer and affects its activities.
    Pandey PK; Kaushik N; Singh K; Sharma B; Upadhyay AK; Kumar S; Harris D; Pandey VN
    BMC Biochem; 2002 Jun; 3():18. PubMed ID: 12086585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process.
    Divita G; Rittinger K; Geourjon C; Deléage G; Goody RS
    J Mol Biol; 1995 Feb; 245(5):508-21. PubMed ID: 7531247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional analysis of novel selective mutants of the reverse transcriptase of human immunodeficiency virus type 1.
    Hizi A; Shaharabany M
    J Biol Chem; 1992 Sep; 267(26):18255-8. PubMed ID: 1382052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutational analysis of the ribonuclease H activity of human immunodeficiency virus 1 reverse transcriptase.
    Hizi A; Hughes SH; Shaharabany M
    Virology; 1990 Apr; 175(2):575-80. PubMed ID: 1691564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNase H requirements for the second strand transfer reaction of human immunodeficiency virus type 1 reverse transcription.
    Smith CM; Smith JS; Roth MJ
    J Virol; 1999 Aug; 73(8):6573-81. PubMed ID: 10400754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.