BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 12595793)

  • 21. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging.
    Weissleder R; Lee AS; Khaw BA; Shen T; Brady TJ
    Radiology; 1992 Feb; 182(2):381-5. PubMed ID: 1732953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First multiparametric cardiovascular magnetic resonance study using ultrasmall superparamagnetic iron oxide nanoparticles in a patient with acute myocardial infarction: new vistas for the clinical application of ultrasmall superparamagnetic iron oxide.
    Yilmaz A; Rösch S; Yildiz H; Klumpp S; Sechtem U
    Circulation; 2012 Oct; 126(15):1932-4. PubMed ID: 23044610
    [No Abstract]   [Full Text] [Related]  

  • 23. Visualization of myocardial microstructure using high-resolution T*2 imaging at high magnetic field.
    Köhler S; Hiller KH; Waller C; Jakob PM; Bauer WR; Haase A
    Magn Reson Med; 2003 Feb; 49(2):371-5. PubMed ID: 12541258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superparamagnetic iron oxide MION as a contrast agent for sodium MRI in myocardial infarction.
    Constantinides CD; Rogers J; Herzka DA; Boada FE; Bolar D; Kraitchman D; Gillen J; Bottomley PA
    Magn Reson Med; 2001 Dec; 46(6):1164-8. PubMed ID: 11746583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MnO nanoparticles with potential application in magnetic resonance imaging and drug delivery for myocardial infarction.
    Zheng Y; Zhang H; Hu Y; Bai L; Xue J
    Int J Nanomedicine; 2018; 13():6177-6188. PubMed ID: 30323598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current applications of nanotechnology for magnetic resonance imaging of apoptosis.
    Strijkers GJ; van Tilborg GA; Geelen T; Reutelingsperger CP; Nicolay K
    Methods Mol Biol; 2010; 624():325-42. PubMed ID: 20217606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging of magnetic microfield distortions allows sensitive single-cell detection.
    Lindquist RL; Papazoglou S; Scharlach C; Waiczies H; Schnorr J; Taupitz M; Hamm B; Schellenberger E
    Mol Imaging; 2013; 12(2):83-9. PubMed ID: 23415396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound.
    Oh J; Feldman MD; Kim J; Condit C; Emelianov S; Milner TE
    Nanotechnology; 2006 Aug; 17(16):4183-90. PubMed ID: 21727557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simplified synthesis and relaxometry of magnetoferritin for magnetic resonance imaging.
    Jordan VC; Caplan MR; Bennett KM
    Magn Reson Med; 2010 Nov; 64(5):1260-6. PubMed ID: 20677230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection.
    Qiao H; Zhang H; Zheng Y; Ponde DE; Shen D; Gao F; Bakken AB; Schmitz A; Kung HF; Ferrari VA; Zhou R
    Radiology; 2009 Mar; 250(3):821-9. PubMed ID: 19244049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. External Magnetic Field-Induced Targeted Delivery of Highly Sensitive Iron Oxide Nanocubes for MRI of Myocardial Infarction.
    Hu B; Zeng M; Chen J; Zhang Z; Zhang X; Fan Z; Zhang X
    Small; 2016 Sep; 12(34):4707-12. PubMed ID: 27147555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological performance of a size-fractionated core-shell tantalum oxide nanoparticle x-ray contrast agent.
    Torres AS; Bonitatibus PJ; Colborn RE; Goddard GD; FitzGerald PF; Lee BD; Marino ME
    Invest Radiol; 2012 Oct; 47(10):578-87. PubMed ID: 22836312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [MR imaging--evaluation of viability in infarcted myocardium by MRI].
    Imai K
    Nihon Rinsho; 1994 Aug; 52 Suppl(Pt 2):621-5. PubMed ID: 12440035
    [No Abstract]   [Full Text] [Related]  

  • 34. Imaging nanoparticle flow using magneto-motive optical Doppler tomography.
    Kim J; Oh J; Milner TE; Nelson JS
    Nanotechnology; 2007 Jan; 18(3):035504. PubMed ID: 19636123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection.
    Rahmer J; Antonelli A; Sfara C; Tiemann B; Gleich B; Magnani M; Weizenecker J; Borgert J
    Phys Med Biol; 2013 Jun; 58(12):3965-77. PubMed ID: 23685712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular imaging of inflammation after experimental spinal cord injury.
    Dunn EA; Weaver LC; Dekaban GA; Foster PJ
    Mol Imaging; 2005; 4(1):53-62. PubMed ID: 15967126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton magnetic resonance of early myocardial infarction in rats.
    Polak JF; Vivaldi MT; Schoen FJ
    Invest Radiol; 1988 Jun; 23(6):428-32. PubMed ID: 3403202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear magnetic resonance imaging of the infarcted muscle: a rat model.
    Herfkens RJ; Sievers R; Kaufman L; Sheldon PE; Ortendahl DA; Lipton MJ; Crooks LE; Higgins CB
    Radiology; 1983 Jun; 147(3):761-4. PubMed ID: 6844611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids.
    Lee CM; Jeong HJ; Lim ST; Sohn MH; Kim DW
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):756-9. PubMed ID: 20356277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MR imaging of transplanted stem cells in myocardial infarction.
    Kraitchman DL; Kedziorek DA; Bulte JW
    Methods Mol Biol; 2011; 680():141-52. PubMed ID: 21153379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.