BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

782 related articles for article (PubMed ID: 12596151)

  • 21. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amyloid architecture: complementary assembly of heterogeneous combinations of three or four peptides into amyloid fibrils.
    Takahashi Y; Ueno A; Mihara H
    Chembiochem; 2002 Jul; 3(7):637-42. PubMed ID: 12324997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model.
    Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH
    J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils.
    Takahashi Y; Mihara H
    Bioorg Med Chem; 2004 Feb; 12(4):693-9. PubMed ID: 14759730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of a designed amyloid peptide containing the functional thienylalanine unit.
    Hamley IW; Brown GD; Castelletto V; Cheng G; Venanzi M; Caruso M; Placidi E; Aleman C; Revilla-López G; Zanuy D
    J Phys Chem B; 2010 Aug; 114(32):10674-83. PubMed ID: 20662537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils.
    Fezoui Y; Hartley DM; Walsh DM; Selkoe DJ; Osterhout JJ; Teplow DB
    Nat Struct Biol; 2000 Dec; 7(12):1095-9. PubMed ID: 11101888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural control of self-assembled nanofibers by artificial beta-sheet peptides composed of D- or L-isomer.
    Koga T; Matsuoka M; Higashi N
    J Am Chem Soc; 2005 Dec; 127(50):17596-7. PubMed ID: 16351076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiscale surface self-assembly of an amyloid-like peptide.
    Lepère M; Chevallard C; Hernandez JF; Mitraki A; Guenoun P
    Langmuir; 2007 Jul; 23(15):8150-5. PubMed ID: 17579468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers.
    Cottingham MG; Voskuil JL; Vaux DJ
    Biochemistry; 2003 Sep; 42(36):10863-73. PubMed ID: 12962511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural control of peptide-coated gold nanoparticle assemblies by the conformational transition of surface peptides.
    Higuchi M; Ushiba K; Kawaguchi M
    J Colloid Interface Sci; 2007 Apr; 308(2):356-63. PubMed ID: 17270198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beta-hairpin folding by a model amyloid peptide in solution and at an interface.
    Knecht V
    J Phys Chem B; 2008 Aug; 112(31):9476-83. PubMed ID: 18593146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein.
    Kumar S; Udgaonkar JB
    Biochemistry; 2009 Jul; 48(27):6441-9. PubMed ID: 19505087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.