BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12596242)

  • 21. Effect of dissolved oxygen regime on growth dynamics of Pseudomonas spp during benzene degradation.
    Mahendran B; Choi NC; Choi JW; Kim DJ
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):350-4. PubMed ID: 16172886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic modeling of a mixed culture of Pseudomonas denitrificans and Bacillus subtilis under aerobic and anoxic operating conditions.
    Marazioti C; Kornaros M; Lyberatos G
    Water Res; 2003 Mar; 37(6):1239-51. PubMed ID: 12598188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of artificial neural network model for the development of optimized complex medium for phenol degradation using Pseudomonas pictorum (NICM 2074).
    Annadurai G; Lee JF
    Biodegradation; 2007 Jun; 18(3):383-92. PubMed ID: 17334817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of carbon and nitrogen sources and growth factors for the production of an aquaculture probiotic (Pseudomonas MCCB 103) using response surface methodology.
    Preetha R; Jayaprakash NS; Philip R; Bright Singh IS
    J Appl Microbiol; 2007 Apr; 102(4):1043-51. PubMed ID: 17381748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.
    Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K
    Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095.
    Song H; Liu Y; Xu W; Zeng G; Aibibu N; Xu L; Chen B
    Bioresour Technol; 2009 Nov; 100(21):5079-84. PubMed ID: 19541478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diyne inactivators and activity-based fluorescent labeling of phenol hydroxylase in Pseudomonas sp. CF600.
    Oyarzun Mejia AP; Hyman MR
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36617235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of glucose on phenol biodegradation by heterogeneous populations.
    Rozich AF; Colvin RJ
    Biotechnol Bioeng; 1986 Jul; 28(7):965-71. PubMed ID: 18555417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Feb; 151(1):171-8. PubMed ID: 17618738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth and nitrogen fixation by cultures of Bacillus sp. S 77 g, Pseudomonas sp. S 44 b, and Klebsiella sp. S 145 m, isolated from Egyptian soils.
    Shawky BT
    Zentralbl Mikrobiol; 1983; 138(1):9-15. PubMed ID: 6845905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa.
    Li W; Lu CD
    J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate.
    Bucheli-Witschel M; Hafner T; Rüegg I; Egli T
    Biodegradation; 2009 Jun; 20(3):419-31. PubMed ID: 19039669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Occurrence and properties of glutathione S-transferases in phenol-degrading Pseudomonas strains.
    Santos PM; Mignogna G; Heipieper HJ; Zennaro E
    Res Microbiol; 2002 Mar; 153(2):89-98. PubMed ID: 11900268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the membrane subproteomes during growth of a new pseudomonas strain on lysogeny broth medium, glucose, and phenol.
    Papasotiriou DG; Markoutsa S; Meyer B; Papadioti A; Karas M; Tsiotis G
    J Proteome Res; 2008 Oct; 7(10):4278-88. PubMed ID: 18707154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Phenol biodegradation by a Pseudomonas sp. strain tagged with the gfp gene].
    Adylova AT; Chernikova TN; Abdukarimov AA
    Prikl Biokhim Mikrobiol; 2008; 44(3):308-13. PubMed ID: 18663954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of carbon and nitrogen sources and oxygenation on the production of inulinase by Kluyveromyces marxianus.
    Silva-Santisteban BO; Converti A; Filho FM
    Appl Biochem Biotechnol; 2009 Feb; 152(2):249-61. PubMed ID: 18483875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of carbon-nitrogen ratio for production of gibberellic acid by Pseudomonas sp.
    Başiaçik Karakoç S; Aksöz N
    Pol J Microbiol; 2004; 53(2):117-20. PubMed ID: 15478357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy.
    Kurbatov L; Albrecht D; Herrmann H; Petruschka L
    Environ Microbiol; 2006 Mar; 8(3):466-78. PubMed ID: 16478453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening and characterization of bacteria that can utilize ammonium and nitrate ions simultaneously under controlled cultural conditions.
    Zhou Q; Takenaka S; Murakami S; Seesuriyachan P; Kuntiya A; Aoki K
    J Biosci Bioeng; 2007 Feb; 103(2):185-91. PubMed ID: 17368403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Biosynthesis of keto acids by Pseudomonas fluorescens with varying carbon-nitrogen ratios in the medium].
    Kolesnikova IG; Bekhtereva MN
    Mikrobiologiia; 1971; 40(1):23-7. PubMed ID: 5580116
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.