These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12596469)

  • 1. Monte Carlo simulation of the assembly of bis-biotinylated DNA and streptavidin.
    Richter J; Adler M; Niemeyer CM
    Chemphyschem; 2003 Jan; 4(1):79-83. PubMed ID: 12596469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular DNA-streptavidin nanocircles with a covalently attached oligonucleotide moiety.
    Niemeyer CM; Adler M; Gao S; Chi L
    J Biomol Struct Dyn; 2002 Oct; 20(2):223-30. PubMed ID: 12354074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR.
    Niemeyer CM; Adler M; Pignataro B; Lenhert S; Gao S; Chi L; Fuchs H; Blohm D
    Nucleic Acids Res; 1999 Dec; 27(23):4553-61. PubMed ID: 10556310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.
    Antonenko YN; Rokitskaya TI; Kotova EA; Reznik GO; Sano T; Cantor CR
    Biochemistry; 2004 Apr; 43(15):4575-82. PubMed ID: 15078104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope.
    Kobayashi M; Sumitomo K; Torimitsu K
    Ultramicroscopy; 2007; 107(2-3):184-90. PubMed ID: 16949754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unbinding of the streptavidin-biotin complex by atomic force microscopy: a hybrid simulation study.
    Zhou J; Zhang L; Leng Y; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2006 Sep; 125(10):104905. PubMed ID: 16999548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptavidin-conjugated C3 protein mediates the delivery of mono-biotinylated RNAse A into macrophages.
    Lillich M; Chen X; Weil T; Barth H; Fahrer J
    Bioconjug Chem; 2012 Jul; 23(7):1426-36. PubMed ID: 22681511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of streptavidin with biotinylated thermosensitive nanospheres based on poly(N,N-diethylacrylamide-co-2-hydroxyethyl methacrylate).
    Colonne M; Chen Y; Wu K; Freiberg S; Giasson S; Zhu XX
    Bioconjug Chem; 2007; 18(3):999-1003. PubMed ID: 17429939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-templated self-assembly of protein and nanoparticle linear arrays.
    Li H; Park SH; Reif JH; LaBean TH; Yan H
    J Am Chem Soc; 2004 Jan; 126(2):418-9. PubMed ID: 14719910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-bridged bioconjugation of fluorescent quantum dots for highly sensitive microfluidic protein chips.
    Hu M; He Y; Song S; Yan J; Lu HT; Weng LX; Wang LH; Fan C
    Chem Commun (Camb); 2010 Sep; 46(33):6126-8. PubMed ID: 20664878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct visualization of ligand-protein interactions using atomic force microscopy.
    Neish CS; Martin IL; Henderson RM; Edwardson JM
    Br J Pharmacol; 2002 Apr; 135(8):1943-50. PubMed ID: 11959797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of biotinylated DNA on 2-D streptavidin crystals.
    Crucifix C; Uhring M; Schultz P
    J Struct Biol; 2004 Jun; 146(3):441-51. PubMed ID: 15099585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.
    Yamasaki R; Ito M; Lee B; Jung H; Lee H; Kawai T
    Anal Chim Acta; 2007 Nov; 603(1):76-81. PubMed ID: 17950060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-templated self-assembly of protein arrays and highly conductive nanowires.
    Yan H; Park SH; Finkelstein G; Reif JH; LaBean TH
    Science; 2003 Sep; 301(5641):1882-4. PubMed ID: 14512621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled alignment of multiple proteins and nanoparticles with nanometer resolution via backbone-modified phosphorothioate DNA and bifunctional linkers.
    Lee JH; Wong NY; Tan LH; Wang Z; Lu Y
    J Am Chem Soc; 2010 Jul; 132(26):8906-8. PubMed ID: 20536179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured dna-protein aggregates consisting of covalent oligonucleotide-streptavidin conjugates.
    Niemeyer CM; Adler M; Gao S; Chi L
    Bioconjug Chem; 2001; 12(3):364-71. PubMed ID: 11353533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-recognition and aggregation between diblock (charged/neutral) polyelectrolytes by Monte Carlo simulations.
    Feng J; Ruckenstein E
    J Chem Phys; 2006 Mar; 124(12):124913. PubMed ID: 16599731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization.
    Su X; Wu YJ; Robelek R; Knoll W
    Langmuir; 2005 Jan; 21(1):348-53. PubMed ID: 15620323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-Directed immobilization: efficient, reversible, and site-selective surface binding of proteins by means of covalent DNA-streptavidin conjugates.
    Niemeyer CM; Boldt L; Ceyhan B; Blohm D
    Anal Biochem; 1999 Mar; 268(1):54-63. PubMed ID: 10036162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA closed nanostructures: a structural and Monte Carlo simulation study.
    Bombelli FB; Gambinossi F; Lagi M; Berti D; Caminati G; Brown T; Sciortino F; Norden B; Baglioni P
    J Phys Chem B; 2008 Dec; 112(48):15283-94. PubMed ID: 18989907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.