These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12596633)

  • 1. Low background, pulsatile, in vitro flow circuit for modeling coronary implant thrombosis.
    Kolandaivelu K; Edelman ER
    J Biomech Eng; 2002 Dec; 124(6):662-8. PubMed ID: 12596633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress.
    Benard N; Coisne D; Donal E; Perrault R
    J Biomech; 2003 Jul; 36(7):991-8. PubMed ID: 12757808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation.
    LaDisa JF; Guler I; Olson LE; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    Ann Biomed Eng; 2003 Sep; 31(8):972-80. PubMed ID: 12918912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MR-velocity mapping in vascular stents to assess peak systolic velocity. In vitro comparison of various stent designs made of Stainless Steel and Nitinol.
    van Holten J; Kunz P; Mulder PG; Pattynama PM; Lamb HJ; van Dijk LC
    MAGMA; 2002 Nov; 15(1-3):52-7. PubMed ID: 12413565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid and solid mechanical implications of vascular stenting.
    Moore J; Berry JL
    Ann Biomed Eng; 2002 Apr; 30(4):498-508. PubMed ID: 12086001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of fluid mechanical disturbance induced by endovascular stents.
    Seo T; Schachter LG; Barakat AI
    Ann Biomed Eng; 2005 Apr; 33(4):444-56. PubMed ID: 15909650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries.
    Early M; Kelly DJ
    Proc Inst Mech Eng H; 2010; 224(3):465-76. PubMed ID: 20408491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DPIV measurements of flow disturbances in stented artery models: adverse affects of compliance mismatch.
    Yazdani SK; Moore JE; Berry JL; Vlachos PP
    J Biomech Eng; 2004 Oct; 126(5):559-66. PubMed ID: 15648808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flow visualization study of an anatomic coronary artery anastomosis model with an implant.
    Anayiotos AS; Pedroso P; Advincula MA; Venugopalan R; Eleftheriou EC; Holman WL
    Technol Health Care; 2003; 11(1):21-39. PubMed ID: 12590156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stress-strain behavior of coronary stent struts is size dependent.
    Murphy BP; Savage P; McHugh PE; Quinn DF
    Ann Biomed Eng; 2003 Jun; 31(6):686-91. PubMed ID: 12797618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening.
    LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cardiocoil stent-artery interaction.
    Brand M; Ryvkin M; Einav S; Slepyan L
    J Biomech Eng; 2005 Apr; 127(2):337-44. PubMed ID: 15971712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of flow in a straight stented and nonstented side wall aneurysm model.
    Aenis M; Stancampiano AP; Wakhloo AK; Lieber BB
    J Biomech Eng; 1997 May; 119(2):206-12. PubMed ID: 9168397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery.
    Faik I; Mongrain R; Leask RL; Rodes-Cabau J; Larose E; Bertrand O
    Biomed Mater; 2007 Mar; 2(1):S28-37. PubMed ID: 18458417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear elastic mechanics of mock arteries: empirical versus theoretically predicted pulsatile stent deflection.
    Rajesh R; Conti JC; Strope ER
    Biomed Sci Instrum; 2007; 43():54-62. PubMed ID: 17487057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.