BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 12596648)

  • 1. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    Eur Spine J; 2004 Feb; 13(1):83-90. PubMed ID: 14730437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical modelling of spinal growth modulation for the study of adolescent scoliotic deformities: a feasibility study.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    Stud Health Technol Inform; 2002; 88():373-7. PubMed ID: 15456064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Correlation study between spinal curvatures and vertebral and disk deformities in idiopathic scoliosis].
    Villemure I; Aubin CE; Dansereau J; Petit Y; Labelle H
    Ann Chir; 1999; 53(8):798-807. PubMed ID: 10584392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study.
    Huynh AM; Aubin CE; Rajwani T; Bagnall KM; Villemure I
    Eur Spine J; 2007 Apr; 16(4):523-9. PubMed ID: 17031702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study.
    Villemure I; Aubin CE; Grimard G; Dansereau J; Labelle H
    Spine (Phila Pa 1976); 2001 Oct; 26(20):2244-50. PubMed ID: 11598515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D correction over 2years with anterior vertebral body growth modulation: A finite element analysis of screw positioning, cable tensioning and postoperative functional activities.
    Cobetto N; Parent S; Aubin CE
    Clin Biomech (Bristol, Avon); 2018 Jan; 51():26-33. PubMed ID: 29169117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of 3D deformities in adolescents with progressive idiopathic scoliosis.
    Villemure I; Aubin CE; Grimard G; Dansereau J; Labelle H
    Stud Health Technol Inform; 2002; 91():54-8. PubMed ID: 15457693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical modeling of posterior instrumentation of the scoliotic spine.
    Aubin CE; Petit Y; Stokes IA; Poulin F; Gardner-Morse M; Labelle H
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):27-32. PubMed ID: 12623435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device.
    Clin J; Aubin CÉ; Parent S
    Spine (Phila Pa 1976); 2015 Mar; 40(6):369-76. PubMed ID: 25584943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature.
    Stokes IA
    Spine (Phila Pa 1976); 1997 Nov; 22(21):2495-503. PubMed ID: 9383855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model.
    Braun JT; Hoffman M; Akyuz E; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 May; 31(12):1314-20. PubMed ID: 16721292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Low Bone Mineral Status on Biomechanical Characteristics in Idiopathic Scoliotic Spinal Deformity.
    Song XX; Jin LY; Li XF; Qian L; Shen HX; Liu ZD; Yu BW
    World Neurosurg; 2018 Feb; 110():e321-e329. PubMed ID: 29133001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis.
    Braun JT; Hines JL; Akyuz E; Vallera C; Ogilvie JW
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1776-82. PubMed ID: 16845350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis.
    Martino J; Aubin CE; Labelle H; Wang X; Parent S
    Spine (Phila Pa 1976); 2013 Jan; 38(2):E73-83. PubMed ID: 23124259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of the scoliotic spine under different loading conditions.
    Cheng FH; Shih SL; Chou WK; Liu CL; Sung WH; Chen CS
    Biomed Mater Eng; 2010; 20(5):251-9. PubMed ID: 21084737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in alignment of the scoliotic spine in response to lateral bending.
    Beuerlein MJ; Raso VJ; Hill DL; Moreau MJ; Mahood JK
    Spine (Phila Pa 1976); 2003 Apr; 28(7):693-8. PubMed ID: 12671357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis.
    Carrier J; Aubin CE; Villemure I; Labelle H
    Med Biol Eng Comput; 2004 Jul; 42(4):541-8. PubMed ID: 15320465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmental vertebral rotation in early scoliosis.
    Xiong B; Sevastik J; Hedlund R; Sevastik B
    Eur Spine J; 1993 Jun; 2(1):37-41. PubMed ID: 20058446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: A magnetic resonance imaging study.
    Little JP; Pearcy MJ; Izatt MT; Boom K; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():220-8. PubMed ID: 26658078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.