These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 12596808)

  • 1. Morphology of extremely heat-resistant spores from Bacillus sp. ATCC 27380 by scanning and transmission electron microscopy.
    Youvan D; Watanabe M; Holmquist R
    Life Sci Space Res; 1977; 15():65-72. PubMed ID: 12596808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.
    Setlow P
    J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk.
    Scheldeman P; Herman L; Foster S; Heyndrickx M
    J Appl Microbiol; 2006 Sep; 101(3):542-55. PubMed ID: 16907805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus sp. ATCC 27380: a spore with extreme resistance to dry heat.
    Bond WW; Favero MS; Korber MR
    Appl Microbiol; 1973 Oct; 26(4):614-6. PubMed ID: 4751804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of laser diffractometry to study the water content of spores of Bacillus sphaericus with different heat resistances.
    De Pieri LA; Ludlow IK; Waites WM
    J Appl Bacteriol; 1993 May; 74(5):578-82. PubMed ID: 8486564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of lethality rate constants and D-values for heat-resistant Bacillus spores ATCC 29669 exposed to dry heat from 125°C to 200°C.
    Schubert WW; Beaudet RA
    Astrobiology; 2011 Apr; 11(3):213-23. PubMed ID: 21417744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of the spore clumps during heat treatment increases the heat resistance of bacterial spores.
    Furukawa S; Narisawa N; Watanabe T; Kawarai T; Myozen K; Okazaki S; Ogihara H; Yamasaki M
    Int J Food Microbiol; 2005 Jun; 102(1):107-11. PubMed ID: 15925006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy of Bacillus spore surface morphology.
    Zolock RA; Li G; Bleckmann C; Burggraf L; Fuller DC
    Micron; 2006; 37(4):363-9. PubMed ID: 16376084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of omnitherms and facultative anaerobes from Cape Canaveral soil samples.
    Brewer JH; Foster TL
    Life Sci Space Res; 1977; 15():53-8. PubMed ID: 12596806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat activation/shock temperatures for Bacillus anthracis spores and the issue of spore plate counts versus true numbers of spores.
    Turnbull PC; Frawley DA; Bull RL
    J Microbiol Methods; 2007 Feb; 68(2):353-7. PubMed ID: 17055602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain.
    Brul S; van Beilen J; Caspers M; O'Brien A; de Koster C; Oomes S; Smelt J; Kort R; Ter Beek A
    Food Microbiol; 2011 Apr; 28(2):221-7. PubMed ID: 21315977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the bacterial spore coat. 6. Effects of alkali extraction on the spore of Bacillus thiaminolyticus.
    Minami J; Ichikawa T; Kondo M
    Microbios; 1977; 19(77-78):231-42. PubMed ID: 617210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the bacterial spore coat 6 effects of alkali extraction on the spore of Bacillus thiaminolyticus.
    Minami J; Ichikawa T; Kondo M
    Microbios; 1977; 18(72):131-40. PubMed ID: 417231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the bacterial spore coat. 5. Effect of sodium dodecyl sulphate sonic treatment on the spore of Bacillus thiaminolyticus.
    Nishihara T; Minami J; Watabe K; Sato K; Kondo M
    Microbios; 1974; 10A SUPPL(41):81-90. PubMed ID: 4142065
    [No Abstract]   [Full Text] [Related]  

  • 15. Inactivation and ultrastructure analysis of Bacillus spp. and Clostridium perfringens spores.
    Brantner CA; Hannah RM; Burans JP; Pope RK
    Microsc Microanal; 2014 Feb; 20(1):238-44. PubMed ID: 24503289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopic examination of uncultured soil-dwelling bacteria.
    Amako K; Takade A; Taniai H; Yoshida S
    Microbiol Immunol; 2008 May; 52(5):265-9. PubMed ID: 18557896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some biological and physical factors in dry heat sterilization: a general review.
    Bruch CW
    Life Sci Space Res; 1964; 2():357-71. PubMed ID: 11883444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface appendages of bacterial spores.
    Driks A
    Mol Microbiol; 2007 Feb; 63(3):623-5. PubMed ID: 17302795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.
    Leguérinel I; Couvert O; Mafart P
    Int J Food Microbiol; 2007 Feb; 114(1):100-4. PubMed ID: 17184868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.