These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 12596846)
21. Quick method (FT-NIR) for the determination of oil and major fatty acids content in whole achenes of milk thistle (Silybum marianum (L.) Gaertn.). Koláčková P; Růžičková G; Gregor T; Šišperová E J Sci Food Agric; 2015 Aug; 95(11):2264-70. PubMed ID: 25297972 [TBL] [Abstract][Full Text] [Related]
22. A Systems Genetics Approach Identifies Gene Regulatory Networks Associated with Fatty Acid Composition in Brassica rapa Seed. Basnet RK; Del Carpio DP; Xiao D; Bucher J; Jin M; Boyle K; Fobert P; Visser RG; Maliepaard C; Bonnema G Plant Physiol; 2016 Jan; 170(1):568-85. PubMed ID: 26518343 [TBL] [Abstract][Full Text] [Related]
23. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Coppa M; Revello-Chion A; Giaccone D; Ferlay A; Tabacco E; Borreani G Food Chem; 2014 May; 150():49-57. PubMed ID: 24360418 [TBL] [Abstract][Full Text] [Related]
24. [Low carbon number fatty acid content prediction based on near-infrared spectroscopy]. Song ZQ; Shen X; Zheng X; He DP; Qi PS; Yang Y; Fang HW Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2079-82. PubMed ID: 24159850 [TBL] [Abstract][Full Text] [Related]
25. Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques. Li S; Zhu X; Zhang J; Li G; Su D; Shan Y J Food Sci; 2012 Apr; 77(4):C374-80. PubMed ID: 22429109 [TBL] [Abstract][Full Text] [Related]
26. Quality and statistical classification of Brazilian vegetable oils using mid-infrared and Raman spectroscopy. Samyn P; Van Nieuwkerke D; Schoukens G; Vonck L; Stanssens D; Van den Aabbeele H Appl Spectrosc; 2012 May; 66(5):552-65. PubMed ID: 22524961 [TBL] [Abstract][Full Text] [Related]
27. African Cucurbita pepo L.: properties of seed and variability in fatty acid composition of seed oil. Younis YM; Ghirmay S; al-Shihry SS Phytochemistry; 2000 May; 54(1):71-5. PubMed ID: 10846750 [TBL] [Abstract][Full Text] [Related]
28. Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils. Matthaus B; Özcan MM; Al Juhaimi FY Nat Prod Res; 2015; 29(2):193-6. PubMed ID: 25329876 [TBL] [Abstract][Full Text] [Related]
29. Raman and near-infrared spectroscopy for quantification of fat composition in a complex food model system. Afseth NK; Segtnan VH; Marquardt BJ; Wold JP Appl Spectrosc; 2005 Nov; 59(11):1324-32. PubMed ID: 16316509 [TBL] [Abstract][Full Text] [Related]
30. Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: a comparative study. Bettaieb I; Bourgou S; Sriti J; Msaada K; Limam F; Marzouk B J Sci Food Agric; 2011 Aug; 91(11):2100-7. PubMed ID: 21681765 [TBL] [Abstract][Full Text] [Related]
31. Fatty acid composition of two Tunisian pine seed oils. Nasri N; Khaldi A; Hammami M; Triki S Biotechnol Prog; 2005; 21(3):998-1001. PubMed ID: 15932286 [TBL] [Abstract][Full Text] [Related]
32. Cyanolipid-rich seed oils from Allophylus natalensis and A. dregeanus. Avato P; Rosito I; Papadia P; Fanizzi FP Lipids; 2005 Oct; 40(10):1051-6. PubMed ID: 16382577 [TBL] [Abstract][Full Text] [Related]
33. Effect of bioactive substances found in rapeseed, raspberry and strawberry seed oils on blood lipid profile and selected parameters of oxidative status in rats. Pieszka M; Tombarkiewicz B; Roman A; Migdał W; Niedziółka J Environ Toxicol Pharmacol; 2013 Nov; 36(3):1055-62. PubMed ID: 24121557 [TBL] [Abstract][Full Text] [Related]
34. A new direct Fourier transform infrared analysis of free fatty acids in edible oils using spectral reconstitution. Yu X; van de Voort FR; Sedman J; Gao JM Anal Bioanal Chem; 2011 Jul; 401(1):315-24. PubMed ID: 21556753 [TBL] [Abstract][Full Text] [Related]
35. [The rapid analysis of fatty acids in vegetable oils by near infrared spectrum]. Yu YB; Zang P; Fu YH; Zhang LD; Yan YL; Chen B Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1554-8. PubMed ID: 18844159 [TBL] [Abstract][Full Text] [Related]
36. Multivariate near infrared spectroscopy models for predicting the methyl esters content in biodiesel. Baptista P; Felizardo P; Menezes JC; Correia MJ Anal Chim Acta; 2008 Jan; 607(2):153-9. PubMed ID: 18190803 [TBL] [Abstract][Full Text] [Related]
37. Focused microwave-assisted Soxhlet extraction of acorn oil for determination of the fatty acid profile by GC-MS. Comparison with conventional and standard methods. Pérez-Serradilla JA; Ortiz MC; Sarabia L; de Castro MD Anal Bioanal Chem; 2007 May; 388(2):451-62. PubMed ID: 17393149 [TBL] [Abstract][Full Text] [Related]
39. Analysis of the seed oil of Heisteria silvanii (Olacaceae)--a rich source of a novel C18 acetylenic fatty acid. Spitzer V; Tomberg W; Hartmann R; Aichholz R Lipids; 1997 Nov; 32(11):1189-200. PubMed ID: 9397405 [TBL] [Abstract][Full Text] [Related]
40. Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality. Kodad O; Socias I Company R J Agric Food Chem; 2008 Jun; 56(11):4096-101. PubMed ID: 18461963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]