These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 12596851)
1. Characterization of a cellobiose phosphorylase from a hyperthermophilic eubacterium, Thermotoga maritima MSB8. Rajashekhara E; Kitaoka M; Kim YK; Hayashi K Biosci Biotechnol Biochem; 2002 Dec; 66(12):2578-86. PubMed ID: 12596851 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis. Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959 [TBL] [Abstract][Full Text] [Related]
3. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Hamura K; Saburi W; Matsui H; Mori H Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516 [TBL] [Abstract][Full Text] [Related]
4. A simple assay for determining activities of phosphopentomutase from a hyperthermophilic bacterium Thermotoga maritima. Moustafa HM; Zaghloul TI; Zhang YH Anal Biochem; 2016 May; 501():75-81. PubMed ID: 26924489 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides. Nihira T; Saito Y; Kitaoka M; Nishimoto M; Otsubo K; Nakai H Carbohydr Res; 2012 Nov; 361():49-54. PubMed ID: 22982171 [TBL] [Abstract][Full Text] [Related]
6. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
7. Role of non-covalent enzyme-substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda. Nidetzky B; Eis C; Albert M Biochem J; 2000 Nov; 351 Pt 3(Pt 3):649-59. PubMed ID: 11042119 [TBL] [Abstract][Full Text] [Related]
8. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using D-glucal as donor substrate. Wildberger P; Brecker L; Nidetzky B Carbohydr Res; 2012 Jul; 356():224-32. PubMed ID: 22591555 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of a novel intracellular alkaline alpha-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Ballschmiter M; Fütterer O; Liebl W Appl Environ Microbiol; 2006 Mar; 72(3):2206-11. PubMed ID: 16517673 [TBL] [Abstract][Full Text] [Related]
10. Expression and Characterization of a Novel Nitrilase from Hyperthermophilic Bacterium Thermotoga maritima MSB8. Chen Z; Chen H; Ni Z; Tian R; Zhang T; Jia J; Yang S J Microbiol Biotechnol; 2015 Oct; 25(10):1660-9. PubMed ID: 26059515 [TBL] [Abstract][Full Text] [Related]
11. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Wu Y; Mao G; Fan H; Song A; Zhang YP; Chen H Sci Rep; 2017 Jul; 7(1):4849. PubMed ID: 28687766 [TBL] [Abstract][Full Text] [Related]
12. Cloning and characterization of a thermostable intracellular alpha-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Lim WJ; Park SR; An CL; Lee JY; Hong SY; Shin EC; Kim EJ; Kim JO; Kim H; Yun HD Res Microbiol; 2003 Dec; 154(10):681-7. PubMed ID: 14643406 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characteristics of maltose phosphorylase MalE from Gao Y; Saburi W; Taguchi Y; Mori H Biosci Biotechnol Biochem; 2019 Nov; 83(11):2097-2109. PubMed ID: 31262243 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. Yernool DA; McCarthy JK; Eveleigh DE; Bok JD J Bacteriol; 2000 Sep; 182(18):5172-9. PubMed ID: 10960102 [TBL] [Abstract][Full Text] [Related]
15. Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase. Kitaoka M; Sasaki T; Taniguchi H J Biochem; 1992 Jul; 112(1):40-4. PubMed ID: 1429509 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. Sawano T; Saburi W; Hamura K; Matsui H; Mori H FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549 [TBL] [Abstract][Full Text] [Related]
17. A thermostable non-xylanolytic alpha-glucuronidase of Thermotoga maritima MSB8. Suresh C; Kitaoka M; Hayashi K Biosci Biotechnol Biochem; 2003 Nov; 67(11):2359-64. PubMed ID: 14646194 [TBL] [Abstract][Full Text] [Related]