BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 12597030)

  • 1. Effect of zinc on antioxidant response in maize (Zea mays L.) leaves.
    Pandey N; Singh AK; Pathak GC; Sharma CP
    Indian J Exp Biol; 2002 Aug; 40(8):954-6. PubMed ID: 12597030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nitric oxide in abscisic acid-induced subcellular antioxidant defense of maize leaves.
    Sang JR; Jiang MY; Lin F; Li J; Xu SC
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):553-66. PubMed ID: 18349510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess Zn alters the nutrient uptake and induces the antioxidative responses in submerged plant Hydrilla verticillata (L.f.) Royle.
    Wang C; Zhang SH; Wang PF; Qian J; Hou J; Zhang WJ; Lu J
    Chemosphere; 2009 Aug; 76(7):938-45. PubMed ID: 19487013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains.
    Haghjou MM; Shariati M; Smirnoff N
    Physiol Plant; 2009 Mar; 135(3):272-80. PubMed ID: 19236661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings.
    Wang C; Zhang SH; Wang PF; Hou J; Zhang WJ; Li W; Lin ZP
    Chemosphere; 2009 Jun; 75(11):1468-76. PubMed ID: 19328518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud.
    Liu Y; Wang X; Zeng G; Qu D; Gu J; Zhou M; Chai L
    Chemosphere; 2007 Aug; 69(1):99-107. PubMed ID: 17532363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid.
    Wang H; Feng T; Peng X; Yan M; Tang X
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1354-62. PubMed ID: 19375798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage.
    Chugh V; Kaur N; Grewal MS; Gupta AK
    Indian J Biochem Biophys; 2013 Apr; 50(2):150-8. PubMed ID: 23720889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ammonium on the antioxidative response in Hydrilla verticillata (L.f.) Royle plants.
    Wang C; Zhang SH; Wang PF; Li W; Lu J
    Ecotoxicol Environ Saf; 2010 Feb; 73(2):189-95. PubMed ID: 19811833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves.
    Xu S
    Acta Biochim Biophys Sin (Shanghai); 2010 Sep; 42(9):646-55. PubMed ID: 20702465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo).
    Bonnet M; Camares O; Veisseire P
    J Exp Bot; 2000 May; 51(346):945-53. PubMed ID: 10948221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii.
    Liu D; Li TQ; Jin XF; Yang XE; Islam E; Mahmood Q
    J Integr Plant Biol; 2008 Feb; 50(2):129-40. PubMed ID: 18713434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of protein phosphorylation in water stress-induced antioxidant defense in maize leaves.
    Xu S; Ding H; Su F; Zhang A; Jiang M
    J Integr Plant Biol; 2009 Jul; 51(7):654-62. PubMed ID: 19566644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L.
    Mallick S; Sinam G; Kumar Mishra R; Sinha S
    Ecotoxicol Environ Saf; 2010 Jul; 73(5):987-95. PubMed ID: 20363501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature-induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves.
    Pastori G; Foyer CH; Mullineaux P
    J Exp Bot; 2000 Jan; 51(342):107-13. PubMed ID: 10938801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.).
    Reddy AM; Kumar SG; Jyothsnakumari G; Thimmanaik S; Sudhakar C
    Chemosphere; 2005 Jun; 60(1):97-104. PubMed ID: 15910908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Oct; 48(5):346-52. PubMed ID: 22165294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) under drought stress.
    Islam MR; Hu Y; Mao S; Jia P; Eneji AE; Xue X
    J Sci Food Agric; 2011 Mar; 91(5):813-9. PubMed ID: 21384348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.