These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12597034)

  • 21. Skatole remediation potential of Rhodopseudomonas palustris WKU-KDNS3 isolated from an animal waste lagoon.
    Sharma N; Doerner KC; Alok PC; Choudhary M
    Lett Appl Microbiol; 2015 Mar; 60(3):298-306. PubMed ID: 25495851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Assimilation of acetate by Rhodopseudomonas palustris].
    Cherniad'ev II; Kondrat'eva EN; Doman NG
    Mikrobiologiia; 1970; 39(1):24-9. PubMed ID: 5451433
    [No Abstract]   [Full Text] [Related]  

  • 23. Photoheterotrophic metabolism of acrylamide by a newly isolated strain of Rhodopseudomonas palustris.
    Wampler DA; Ensign SA
    Appl Environ Microbiol; 2005 Oct; 71(10):5850-7. PubMed ID: 16204496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of lipases by four anoxygenic purple non-sulphur phototrophic bacteria.
    Munjam S; Girisham S; Reddy SM
    Hindustan Antibiot Bull; 2005 Feb-2006 Nov; 47-48(1-4):32-5. PubMed ID: 18697729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The purple non-sulfur bacterium Rhodopseudomonas palustris produces novel petrobactin-related siderophores under aerobic and anaerobic conditions.
    Baars O; Morel FMM; Zhang X
    Environ Microbiol; 2018 May; 20(5):1667-1676. PubMed ID: 29473283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air.
    Arashida H; Kugenuma T; Watanabe M; Maeda I
    J Biosci Bioeng; 2019 May; 127(5):589-593. PubMed ID: 30392964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic degradation of trans-cinnamate and omega-phenylalkane carboxylic acids by the photosynthetic bacterium Rhodopseudomonas palustris: evidence for a beta-oxidation mechanism.
    Elder DJ; Morgan P; Kelly DJ
    Arch Microbiol; 1992; 157(2):148-54. PubMed ID: 1550442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfoacetate generated by Rhodopseudomonas palustris from taurine.
    Denger K; Weinitschke S; Hollemeyer K; Cook AM
    Arch Microbiol; 2004 Oct; 182(2-3):254-8. PubMed ID: 15340795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009.
    Gosse JL; Engel BJ; Rey FE; Harwood CS; Scriven LE; Flickinger MC
    Biotechnol Prog; 2007; 23(1):124-30. PubMed ID: 17269679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression.
    Braatsch S; Bernstein JR; Lessner F; Morgan J; Liao JC; Harwood CS; Beatty JT
    Biochemistry; 2006 Dec; 45(48):14441-51. PubMed ID: 17128983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic-resistant Rhodopseudomonas and Rhodobacter species.
    Mohsin H; Asif A; Rehman Y
    J Basic Microbiol; 2019 Dec; 59(12):1208-1216. PubMed ID: 31613006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. H2 production in Rhodopseudomonas palustris as a way to cope with high light intensities.
    Muzziotti D; Adessi A; Faraloni C; Torzillo G; De Philippis R
    Res Microbiol; 2016 Jun; 167(5):350-6. PubMed ID: 26916624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of purple nonsulfur bacteria grown under Stevia residue extractions.
    Xu J; Feng Y; Wang Y; Lin X
    Lett Appl Microbiol; 2013 Nov; 57(5):420-6. PubMed ID: 23837648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of pyridine by an isolated bacterial consortium/strain and bio-augmentation of strain into activated sludge to enhance pyridine biodegradation.
    Lodha B; Bhadane R; Patel B; Killedar D
    Biodegradation; 2008 Sep; 19(5):717-23. PubMed ID: 18228150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of 3-chlorobenzoate under low-oxygen conditions in pure and mixed cultures of the anoxygenic photoheterotroph Rhodopseudomonas palustris DCP3 and an aerobic Alcaligenes species.
    Krooneman J; van den Akker S; Pedro Gomes TM; Forney LJ; Gottschal JC
    Appl Environ Microbiol; 1999 Jan; 65(1):131-7. PubMed ID: 9872770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria.
    Berne C; Allainmat B; Garcia D
    Biotechnol Lett; 2005 Apr; 27(8):561-6. PubMed ID: 15973490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton correlation NMR studies of metabolism in Rhodopseudomonas palustris.
    Imai Y; Morita S; Arata Y
    J Biochem; 1984 Sep; 96(3):691-9. PubMed ID: 6501261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Pigment synthesis by a mutant of Rhodopseudomonas palustris in different growth conditions].
    Uspenskaia VE; Lyskova GV
    Mikrobiologiia; 1972; 41(6):1038-44. PubMed ID: 4657957
    [No Abstract]   [Full Text] [Related]  

  • 39. [Bacteriochlorophyll synthesis and chlorophyllase activity of non-sulfur purple bacteria].
    Uspenskaia VE
    Izv Akad Nauk SSSR Biol; 1972; 6():882-4. PubMed ID: 4640922
    [No Abstract]   [Full Text] [Related]  

  • 40. Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus.
    Mathur AK; Majumder CB; Chatterjee S; Roy P
    J Hazard Mater; 2008 Sep; 157(2-3):335-43. PubMed ID: 18295401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.