These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12597193)

  • 1. A mechanical model of vocal-fold collision with high spatial and temporal resolution.
    Gunter HE
    J Acoust Soc Am; 2003 Feb; 113(2):994-1000. PubMed ID: 12597193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Potential Role of Subglottal Convergence Angle and Measurement.
    Xu X; Wang J; Devine EE; Wang Y; Zhong H; Courtright MR; Zhou L; Zhuang P; Jiang JJ
    J Voice; 2017 Jan; 31(1):116.e1-116.e5. PubMed ID: 27133615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of vocal fold collision forces during phonation: methods and preliminary data.
    Gunter HE; Howe RD; Zeitels SM; Kobler JB; Hillman RE
    J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision.
    Granados A; Misztal MK; Brunskog J; Visseq V; Erleben K
    Int J Numer Method Biomed Eng; 2017 Feb; 33(2):. PubMed ID: 27058999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comments on the myoelastic - aerodynamic theory of phonation.
    Titze IR
    J Speech Hear Res; 1980 Sep; 23(3):495-510. PubMed ID: 7421153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2012 Sep; 132(3):1602-13. PubMed ID: 22978889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic vibrations of a vocal fold model with a unilateral polyp.
    Zhang Y; Jiang JJ
    J Acoust Soc Am; 2004 Mar; 115(3):1266-9. PubMed ID: 15058347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of vocal fold scarring on phonation: predictions from a finite element model.
    Berry DA; Reininger H; Alipour F; Bless DM; Ford CN
    Ann Otol Rhinol Laryngol; 2005 Nov; 114(11):847-52. PubMed ID: 16363058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds.
    Ikeda T; Matsuzaki Y; Aomatsu T
    J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal fold tissue failure: preliminary data and constitutive modeling.
    Chan RW; Siegmund T
    J Biomech Eng; 2004 Aug; 126(4):466-74. PubMed ID: 15543864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold of oscillation of a vocal fold replica with unilateral surface growths.
    Luizard P; Pelorson X
    J Acoust Soc Am; 2017 May; 141(5):3050. PubMed ID: 28599523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1362-72. PubMed ID: 15807024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.