These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12597200)

  • 1. Simulations of tonotopically mapped speech processors for cochlear implant electrodes varying in insertion depth.
    Faulkner A; Rosen S; Stanton D
    J Acoust Soc Am; 2003 Feb; 113(2):1073-80. PubMed ID: 12597200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The right information may matter more than frequency-place alignment: simulations of frequency-aligned and upward shifting cochlear implant processors for a shallow electrode array insertion.
    Faulkner A; Rosen S; Norman C
    Ear Hear; 2006 Apr; 27(2):139-52. PubMed ID: 16518142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech recognition under conditions of frequency-place compression and expansion.
    Baskent D; Shannon RV
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2064-76. PubMed ID: 12703717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):321-31. PubMed ID: 10466568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor.
    Fishman KE; Shannon RV; Slattery WH
    J Speech Lang Hear Res; 1997 Oct; 40(5):1201-15. PubMed ID: 9328890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptually aligning apical frequency regions leads to more binaural fusion of speech in a cochlear implant simulation.
    Staisloff HE; Lee DH; Aronoff JM
    Hear Res; 2016 Jul; 337():59-64. PubMed ID: 27208791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of stimulation rate on speech recognition with cochlear implants.
    Friesen LM; Shannon RV; Cruz RJ
    Audiol Neurootol; 2005; 10(3):169-84. PubMed ID: 15724088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the effect of cochlear-implant electrode insertion depth on speech understanding.
    Dorman MF; Loizou PC; Rainey D
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2993-6. PubMed ID: 9373986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):332-44. PubMed ID: 10466569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of apical stimulation to Mandarin speech perception in users of the MED-EL COMBI 40+ cochlear implant.
    Qi B; Liu B; Krenmayr A; Liu S; Gong S; Liu H; Zhang N; Han D
    Acta Otolaryngol; 2011 Jan; 131(1):52-8. PubMed ID: 20863152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of insertion depth of cochlear implant electrodes upon speech perception.
    Yukawa K; Cohen L; Blamey P; Pyman B; Tungvachirakul V; O'Leary S
    Audiol Neurootol; 2004; 9(3):163-72. PubMed ID: 15084821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between cochlear implant electrode insertion depth and frequency-place mapping.
    Başkent D; Shannon RV
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1405-16. PubMed ID: 15807028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-to-Place Mismatch: Characterizing Variability and the Influence on Speech Perception Outcomes in Cochlear Implant Recipients.
    Canfarotta MW; Dillon MT; Buss E; Pillsbury HC; Brown KD; O'Connell BP
    Ear Hear; 2020; 41(5):1349-1361. PubMed ID: 32205726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech recognition with altered spectral distribution of envelope cues.
    Shannon RV; Zeng FG; Wygonski J
    J Acoust Soc Am; 1998 Oct; 104(4):2467-76. PubMed ID: 10491708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tonotopic matching and spatial cues on segregation of competing speech in simulations of bilateral cochlear implants.
    Thomas M; Willis S; Galvin JJ; Fu QJ
    PLoS One; 2022; 17(7):e0270759. PubMed ID: 35788202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of perimodiolar placement on speech perception and frequency discrimination by cochlear implant users.
    Fitzgerald MB; Shapiro WH; McDonald PD; Neuburger HS; Ashburn-Reed S; Immerman S; Jethanamest D; Roland JT; Svirsky MA
    Acta Otolaryngol; 2007 Apr; 127(4):378-83. PubMed ID: 17453457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing frequency-to-electrode allocation for individual cochlear implant users.
    Grasmeder ML; Verschuur CA; Batty VB
    J Acoust Soc Am; 2014 Dec; 136(6):3313. PubMed ID: 25480076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of electrode location on speech recognition with the Nucleus-22 cochlear implant.
    Friesen LM; Shannon RV; Slattery WH
    J Am Acad Audiol; 2000 Sep; 11(8):418-28. PubMed ID: 11012237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-to-electrode allocation and speech perception with cochlear implants.
    McKay CM; Henshall KR
    J Acoust Soc Am; 2002 Feb; 111(2):1036-44. PubMed ID: 11863160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.