These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 12597577)
1. Amelioration of mercurial toxicity by manganese. I. A case study in mung bean seedling. Roy SB; Bera AK J Environ Biol; 2002 Jul; 23(3):321-3. PubMed ID: 12597577 [TBL] [Abstract][Full Text] [Related]
2. Individual and combined effect of mercury and manganese on phenol and proline content in leaf and stem of mungbean seedlings. Roy SB; Bera AK J Environ Biol; 2002 Oct; 23(4):433-5. PubMed ID: 12674387 [TBL] [Abstract][Full Text] [Related]
3. Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Mondal NK; Das C; Datta JK Environ Monit Assess; 2015 May; 187(5):241. PubMed ID: 25861903 [TBL] [Abstract][Full Text] [Related]
4. Effect of lead on growth and nitrate assimilation of Vigna radiata (L.) Wilczek seedlings in a salt affected environment. Singh RP; Tripathi RD; Dabas S; Rizvi SM; Ali MB; Sinha SK; Gupta DK; Mishra S; Rai UN Chemosphere; 2003 Aug; 52(7):1245-50. PubMed ID: 12821005 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Leng Y; Li Y; Wen Y; Zhao H; Wang Q; Li SW Ecotoxicol Environ Saf; 2020 Nov; 204():111098. PubMed ID: 32798749 [TBL] [Abstract][Full Text] [Related]
6. Effect of manganese toxicity on pigment content, Hill activity and photosynthetic rate of Vigna radiata L. Wilczek seedlings. Sinha S; Mukherji S; Dutta J J Environ Biol; 2002 Jul; 23(3):253-7. PubMed ID: 12597567 [TBL] [Abstract][Full Text] [Related]
7. Studies on phytotoxic effect of aluminium on growth and some morphological parameters of Vigna radiata L. Wilczek. Neogy M; Datta J; Roy AK; Mukherji S J Environ Biol; 2002 Oct; 23(4):411-6. PubMed ID: 12674383 [TBL] [Abstract][Full Text] [Related]
8. Role of mesoporous silica nanoparticles in combating mercury-induced stress in Vigna radiata (mung bean) and Bacillus coagulans (soil bacteria). Mitra S; Mukherjee S; Sil M; Adak S; Maitra P; Goswami A; Hessel V Environ Sci Pollut Res Int; 2023 Oct; 30(50):109343-109353. PubMed ID: 37924174 [TBL] [Abstract][Full Text] [Related]
9. Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge amended soil. Singh NK; Rai UN; Tewari A; Singh M Bull Environ Contam Toxicol; 2010 Jan; 84(1):118-24. PubMed ID: 19784534 [TBL] [Abstract][Full Text] [Related]
10. Mercury toxicity, molecular response and tolerance in higher plants. Chen J; Yang ZM Biometals; 2012 Oct; 25(5):847-57. PubMed ID: 22639189 [TBL] [Abstract][Full Text] [Related]
11. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. Mathew DC; Ho YN; Gicana RG; Mathew GM; Chien MC; Huang CC PLoS One; 2015; 10(3):e0121178. PubMed ID: 25816328 [TBL] [Abstract][Full Text] [Related]
12. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Das J; Sarkar P Sci Total Environ; 2018 May; 624():1106-1118. PubMed ID: 29625525 [TBL] [Abstract][Full Text] [Related]
13. Mercury uptake by Silene vulgaris grown on contaminated spiked soils. Pérez-Sanz A; Millán R; Sierra MJ; Alarcón R; García P; Gil-Díaz M; Vazquez S; Lobo MC J Environ Manage; 2012 Mar; 95 Suppl():S233-7. PubMed ID: 20708330 [TBL] [Abstract][Full Text] [Related]
14. Uptake studies of environmentally hazardous (51)Cr in Mung beans. Banerjee A; Nayak D; Chakrabortty D; Lahiri S Environ Pollut; 2008 Jan; 151(2):423-7. PubMed ID: 17673342 [TBL] [Abstract][Full Text] [Related]
15. The metal distribution and the change of physiological and biochemical process in soybean and mung bean plants under heavy metal stress. Mao F; Nan G; Cao M; Gao Y; Guo L; Meng X; Yang G Int J Phytoremediation; 2018 Sep; 20(11):1113-1120. PubMed ID: 30156914 [TBL] [Abstract][Full Text] [Related]
16. Foliar exchange of mercury as a function of soil and air mercury concentrations. Ericksen JA; Gustin MS Sci Total Environ; 2004 May; 324(1-3):271-9. PubMed ID: 15081712 [TBL] [Abstract][Full Text] [Related]
17. Manganese toxicity thresholds for restoration grass species. Paschke MW; Valdecantos A; Redente EF Environ Pollut; 2005 May; 135(2):313-22. PubMed ID: 15734591 [TBL] [Abstract][Full Text] [Related]
18. Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Sobrino-Plata J; Ortega-Villasante C; Flores-Cáceres ML; Escobar C; Del Campo FF; Hernández LE Chemosphere; 2009 Nov; 77(7):946-54. PubMed ID: 19732935 [TBL] [Abstract][Full Text] [Related]
19. Effect of a metal mixture in diet on the toxicokinetics and toxicity of cadmium, mercury and manganese in rats. Kostial K; Blanusa M; Maljković T; Kello D; Rabar I; Stara JF Toxicol Ind Health; 1989 Oct; 5(5):685-98. PubMed ID: 2815101 [TBL] [Abstract][Full Text] [Related]
20. Effects of rutin on vegetative growth of mung bean (Vigna radiata) seedlings and its interaction with indoleacetic acid. Liang H; Sagawa Y; Li QX Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):361-8. PubMed ID: 16121006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]