These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 12598125)

  • 1. Genome-specific higher-order background models to improve motif detection.
    Marchal K; Thijs G; De Keersmaecker S; Monsieurs P; De Moor B; Vanderleyden J
    Trends Microbiol; 2003 Feb; 11(2):61-6. PubMed ID: 12598125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas aeruginosa promoters which contain a conserved GG-N10-GC motif but appear to be RpoN-independent.
    Savioz A; Zimmermann A; Haas D
    Mol Gen Genet; 1993 Apr; 238(1-2):74-80. PubMed ID: 8479442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa.
    Dove SL; Hochschild A
    J Bacteriol; 2001 Nov; 183(21):6413-21. PubMed ID: 11591686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G4PromFinder: an algorithm for predicting transcription promoters in GC-rich bacterial genomes based on AT-rich elements and G-quadruplex motifs.
    Di Salvo M; Pinatel E; Talà A; Fondi M; Peano C; Alifano P
    BMC Bioinformatics; 2018 Feb; 19(1):36. PubMed ID: 29409441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling.
    Thijs G; Lescot M; Marchal K; Rombauts S; De Moor B; Rouzé P; Moreau Y
    Bioinformatics; 2001 Dec; 17(12):1113-22. PubMed ID: 11751219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoter addresses: revelations from oligonucleotide profiling applied to the Escherichia coli genome.
    Sivaraman K; Seshasayee AS; Swaminathan K; Muthukumaran G; Pennathur G
    Theor Biol Med Model; 2005 May; 2():20. PubMed ID: 15927055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals.
    Vanet A; Marsan L; Labigne A; Sagot MF
    J Mol Biol; 2000 Mar; 297(2):335-53. PubMed ID: 10715205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More robust detection of motifs in coexpressed genes by using phylogenetic information.
    Monsieurs P; Thijs G; Fadda AA; De Keersmaecker SC; Vanderleyden J; De Moor B; Marchal K
    BMC Bioinformatics; 2006 Mar; 7():160. PubMed ID: 16549017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sigma 28 promoter prediction in members of the Gammaproteobacteria.
    Song W; Maiste PJ; Naiman DQ; Ward MJ
    FEMS Microbiol Lett; 2007 Jun; 271(2):222-9. PubMed ID: 17439543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa.
    Schurr MJ; Yu H; Boucher JC; Hibler NS; Deretic V
    J Bacteriol; 1995 Oct; 177(19):5670-9. PubMed ID: 7559357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites.
    Qin ZS; McCue LA; Thompson W; Mayerhofer L; Lawrence CE; Liu JS
    Nat Biotechnol; 2003 Apr; 21(4):435-9. PubMed ID: 12627170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro transcription analysis of rpoD in Pseudomonas aeruginosa PAO1.
    Aramaki H; Fujita M
    FEMS Microbiol Lett; 1999 Nov; 180(2):311-6. PubMed ID: 10556727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of sigma-70 consensus promoters in Pseudomonas aeruginosa and Escherichia coli.
    McLean BW; Wiseman SL; Kropinski AM
    Can J Microbiol; 1997 Oct; 43(10):981-5. PubMed ID: 9396150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning the gene for the heat shock response positive regulator (sigma 32 homolog) from Pseudomonas aeruginosa.
    Naczynski ZM; Mueller C; Kropinski AM
    Can J Microbiol; 1995 Jan; 41(1):75-87. PubMed ID: 7728657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and analysis of the gene (rpoDA) for the principal sigma factor of Pseudomonas aeruginosa.
    Tanaka K; Takahashi H
    Biochim Biophys Acta; 1991 May; 1089(1):113-9. PubMed ID: 1902749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved Gibbs sampling method for motif discovery via sequence weighting.
    Chen X; Jiang T
    Comput Syst Bioinformatics Conf; 2006; ():239-47. PubMed ID: 17369642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phylogenetic Gibbs sampler that yields centroid solutions for cis-regulatory site prediction.
    Newberg LA; Thompson WA; Conlan S; Smith TM; McCue LA; Lawrence CE
    Bioinformatics; 2007 Jul; 23(14):1718-27. PubMed ID: 17488758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.