These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12598259)

  • 1. Carbon monoxide production from sevoflurane breakdown: modeling of exposures under clinical conditions.
    Holak EJ; Mei DA; Dunning MB; Gundamraj R; Noseir R; Zhang L; Woehlck HJ
    Anesth Analg; 2003 Mar; 96(3):757-764. PubMed ID: 12598259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Amsorb, sodalime, and Baralyme degradation of volatile anesthetics and formation of carbon monoxide and compound a in swine in vivo.
    Kharasch ED; Powers KM; Artru AA
    Anesthesiology; 2002 Jan; 96(1):173-82. PubMed ID: 11753018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents.
    Frink EJ; Nogami WM; Morgan SE; Salmon RC
    Anesthesiology; 1997 Aug; 87(2):308-16. PubMed ID: 9286895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine.
    Baxter PJ; Kharasch ED
    Anesthesiology; 1997 May; 86(5):1061-5. PubMed ID: 9158355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of carbon monoxide exposures from anesthetic breakdown: effect of subject size, hematocrit, fraction of inspired oxygen, and quantity of carbon monoxide.
    Woehlck HJ; Mei D; Dunning MB; Ruiz F
    Anesthesiology; 2001 Mar; 94(3):457-60. PubMed ID: 11374606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baralyme dehydration increases and soda lime dehydration decreases the concentration of compound A resulting from sevoflurane degradation in a standard anesthetic circuit.
    Eger EI; Ionescu P; Laster MJ; Weiskopf RB
    Anesth Analg; 1997 Oct; 85(4):892-8. PubMed ID: 9322476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical factors affecting the production of carbon monoxide from anesthetic breakdown.
    Woehlck HJ; Dunning M; Raza T; Ruiz F; Bolla B; Zink W
    Anesthesiology; 2001 Mar; 94(3):453-6. PubMed ID: 11374605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperatures in soda lime during degradation of desflurane, isoflurane, and sevoflurane by desiccated soda lime.
    Laster MJ; Eger EI
    Anesth Analg; 2005 Sep; 101(3):753-757. PubMed ID: 16115987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fires from the interaction of anesthetics with desiccated absorbent.
    Laster M; Roth P; Eger EI
    Anesth Analg; 2004 Sep; 99(3):769-774. PubMed ID: 15333409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydration of Baralyme increases compound A resulting from sevoflurane degradation in a standard anesthetic circuit used to anesthetize swine.
    Steffey EP; Laster MJ; Ionescu P; Eger EI; Gong D; Weiskopf RB
    Anesth Analg; 1997 Dec; 85(6):1382-6. PubMed ID: 9390613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon monoxide production from desflurane, enflurane, halothane, isoflurane, and sevoflurane with dry soda lime.
    Wissing H; Kuhn I; Warnken U; Dudziak R
    Anesthesiology; 2001 Nov; 95(5):1205-12. PubMed ID: 11684991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme.
    Fang ZX; Eger EI; Laster MJ; Chortkoff BS; Kandel L; Ionescu P
    Anesth Analg; 1995 Jun; 80(6):1187-93. PubMed ID: 7762850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of carbon monoxide production as a result of the interaction of five volatile anesthetics and desiccated sodalime with an electrochemical carbon monoxide sensor in an anesthetic circuit compared to gas chromatography.
    Keijzer C; Perez RS; de Lange JJ
    J Clin Monit Comput; 2007 Aug; 21(4):257-64. PubMed ID: 17597416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorbents differ enormously in their capacity to produce compound A and carbon monoxide.
    Stabernack CR; Brown R; Laster MJ; Dudziak R; Eger EI
    Anesth Analg; 2000 Jun; 90(6):1428-35. PubMed ID: 10825335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The elimination of sodium and potassium hydroxides from desiccated soda lime diminishes degradation of desflurane to carbon monoxide and sevoflurane to compound A but does not compromise carbon dioxide absorption.
    Neumann MA; Laster MJ; Weiskopf RB; Gong DH; Dudziak R; Förster H; Eger EI
    Anesth Analg; 1999 Sep; 89(3):768-73. PubMed ID: 10475323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sevoflurane breakdown produces flammable concentrations of hydrogen.
    Dunning MB; Bretscher LE; Arain SR; Symkowski Y; Woehlck HJ
    Anesthesiology; 2007 Jan; 106(1):144-8. PubMed ID: 17197856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-flow anesthesia and reduced animal size increase carboxyhemoglobin levels in swine during desflurane and isoflurane breakdown in dried soda lime.
    Bonome C; Belda J; Alvarez-Refojo F; Soro M; Fernández-Goti C; Cortés A
    Anesth Analg; 1999 Oct; 89(4):909-16. PubMed ID: 10607409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of carbon monoxide during routine anesthetics in infants and children.
    Levy RJ; Nasr VG; Rivera O; Roberts R; Slack M; Kanter JP; Ratnayaka K; Kaplan RF; McGowan FX
    Anesth Analg; 2010 Mar; 110(3):747-53. PubMed ID: 20185653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound A and carbon monoxide production from sevoflurane and seven different types of carbon dioxide absorbent in a patient model.
    Keijzer C; Perez RS; de Lange JJ
    Acta Anaesthesiol Scand; 2007 Jan; 51(1):31-7. PubMed ID: 17096668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry provides warning of carbon monoxide exposure via trifluoromethane.
    Woehick HJ; Dunning M; Nithipatikom K; Kulier AH; Henry DW
    Anesthesiology; 1996 Jun; 84(6):1489-93. PubMed ID: 8669691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.