These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12598564)

  • 1. Reactive oxygen species production in association with suberization: evidence for an NADPH-dependent oxidase.
    Razem FA; Bernards MA
    J Exp Bot; 2003 Mar; 54(384):935-41. PubMed ID: 12598564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular localization of Strboh proteins and NADPH-dependent O2(-)-generating activity in potato tuber tissues.
    Kobayashi M; Kawakita K; Maeshima M; Doke N; Yoshioka H
    J Exp Bot; 2006; 57(6):1373-9. PubMed ID: 16551687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers.
    Kumar GN; Iyer S; Knowles NR
    Planta; 2007 Dec; 227(1):25-36. PubMed ID: 17653758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato.
    Yoshioka H; Sugie K; Park HJ; Maeda H; Tsuda N; Kawakita K; Doke N
    Mol Plant Microbe Interact; 2001 Jun; 14(6):725-36. PubMed ID: 11386368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The poly(phenolic) domain of potato suberin: a non-lignin cell wall bio-polymer.
    Bernards MA; Razem FA
    Phytochemistry; 2001 Aug; 57(7):1115-22. PubMed ID: 11430984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) treatment on regulation of reactive oxygen species metabolism involved in wound healing of potato tubers during postharvest.
    Jiang H; Wang Y; Li C; Wang B; Ma L; Ren Y; Bi Y; Li Y; Xue H; Prusky D
    Food Chem; 2020 Mar; 309():125608. PubMed ID: 31678673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis.
    Bernards MA; Susag LM; Bedgar DL; Anterola AM; Lewis NG
    J Plant Physiol; 2000 Dec; 157(6):601-7. PubMed ID: 11858251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of the suberization-associated anionic peroxidase of potato.
    Bernards MA; Fleming WD; Llewellyn DB; Priefer R; Yang X; Sabatino A; Plourde GL
    Plant Physiol; 1999 Sep; 121(1):135-46. PubMed ID: 10482668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of reactive oxygen species in the induction of (S)-N-p-coumaroyloctopamine accumulation by beta-1,3-glucooligosaccharide elicitors in potato tuber tissues.
    Matsuda F; Miyagawa H; Ueno T
    Z Naturforsch C J Biosci; 2001; 56(3-4):228-34. PubMed ID: 11371013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH-oxidase activity: the probable source of reactive oxygen intermediate generation in hemocytes of the gastropod Lymnaea stagnalis.
    Adema CM; van Deutekom-Mulder EC; van der Knaap WP; Sminia T
    J Leukoc Biol; 1993 Nov; 54(5):379-83. PubMed ID: 8228616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase.
    Heyno E; Klose C; Krieger-Liszkay A
    New Phytol; 2008; 179(3):687-699. PubMed ID: 18537884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential induction of polar and non-polar metabolism during wound-induced suberization in potato (Solanum tuberosum L.) tubers.
    Woolfson KN; Haggitt ML; Zhang Y; Kachura A; Bjelica A; Rey Rincon MA; Kaberi KM; Bernards MA
    Plant J; 2018 Mar; 93(5):931-942. PubMed ID: 29315972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkyl ferulates in wound healing potato tubers.
    Bernards MA; Lewis NG
    Phytochemistry; 1992 Oct; 31(10):3409-12. PubMed ID: 11536514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: cross-coupling and dimerization reactions.
    Arrieta-Baez D; Stark RE
    Phytochemistry; 2006 Apr; 67(7):743-53. PubMed ID: 16524605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase.
    Kobayashi M; Ohura I; Kawakita K; Yokota N; Fujiwara M; Shimamoto K; Doke N; Yoshioka H
    Plant Cell; 2007 Mar; 19(3):1065-80. PubMed ID: 17400895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of plant respiratory burst oxidase homologs in stress responses.
    Wang W; Chen D; Zhang X; Liu D; Cheng Y; Shen F
    Free Radic Res; 2018 Aug; 52(8):826-839. PubMed ID: 29732902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro.
    Tian J; Cheng Y; Kong X; Liu M; Jiang F; Wu Z
    Protoplasma; 2017 Jan; 254(1):379-388. PubMed ID: 26945990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH oxidase-dependent formation of reactive oxygen species contributes to angiotensin II-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells.
    Chang J; Jiang Z; Zhang H; Zhu H; Zhou SF; Yu X
    Int J Mol Med; 2011 Sep; 28(3):405-12. PubMed ID: 21537828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase.
    Li JM; Shah AM
    Cardiovasc Res; 2001 Dec; 52(3):477-86. PubMed ID: 11738065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.