These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 12598617)

  • 1. GTPase regulators and photoresponses in cones of the eastern chipmunk.
    Zhang X; Wensel TG; Kraft TW
    J Neurosci; 2003 Feb; 23(4):1287-97. PubMed ID: 12598617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1.
    Chen CK; Burns ME; He W; Wensel TG; Baylor DA; Simon MI
    Nature; 2000 Feb; 403(6769):557-60. PubMed ID: 10676965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X; Wensel TG; Yuan C
    Photochem Photobiol; 2006; 82(6):1452-60. PubMed ID: 16553462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein.
    Skiba NP; Hopp JA; Arshavsky VY
    J Biol Chem; 2000 Oct; 275(42):32716-20. PubMed ID: 10973941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods.
    Cowan CW; Fariss RN; Sokal I; Palczewski K; Wensel TG
    Proc Natl Acad Sci U S A; 1998 Apr; 95(9):5351-6. PubMed ID: 9560279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange of Cone for Rod Phosphodiesterase 6 Catalytic Subunits in Rod Photoreceptors Mimics in Part Features of Light Adaptation.
    Majumder A; Pahlberg J; Muradov H; Boyd KK; Sampath AP; Artemyev NO
    J Neurosci; 2015 Jun; 35(24):9225-35. PubMed ID: 26085644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged photoresponses and defective adaptation in rods of Gbeta5-/- mice.
    Krispel CM; Chen CK; Simon MI; Burns ME
    J Neurosci; 2003 Aug; 23(18):6965-71. PubMed ID: 12904457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms characterizing cone photoresponses.
    Tachibanaki S; Shimauchi-Matsukawa Y; Arinobu D; Kawamura S
    Photochem Photobiol; 2007; 83(1):19-26. PubMed ID: 16706600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability.
    He W; Lu L; Zhang X; El-Hodiri HM; Chen CK; Slep KC; Simon MI; Jamrich M; Wensel TG
    J Biol Chem; 2000 Nov; 275(47):37093-100. PubMed ID: 10978345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations.
    Peng YW; Hao Y; Petters RM; Wong F
    Nat Neurosci; 2000 Nov; 3(11):1121-7. PubMed ID: 11036269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant delta subunit.
    Florio SK; Prusti RK; Beavo JA
    J Biol Chem; 1996 Sep; 271(39):24036-47. PubMed ID: 8798640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
    Heikkinen H; Nymark S; Koskelainen A
    Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreceptor cGMP phosphodiesterase delta subunit (PDEdelta) functions as a prenyl-binding protein.
    Zhang H; Liu XH; Zhang K; Chen CK; Frederick JM; Prestwich GD; Baehr W
    J Biol Chem; 2004 Jan; 279(1):407-13. PubMed ID: 14561760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacing the rod with the cone transducin subunit decreases sensitivity and accelerates response decay.
    Chen CK; Woodruff ML; Chen FS; Shim H; Cilluffo MC; Fain GL
    J Physiol; 2010 Sep; 588(Pt 17):3231-41. PubMed ID: 20603337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex.
    Skiba NP; Martemyanov KA; Elfenbein A; Hopp JA; Bohm A; Simonds WF; Arshavsky VY
    J Biol Chem; 2001 Oct; 276(40):37365-72. PubMed ID: 11495924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas.
    Weiss ER; Raman D; Shirakawa S; Ducceschi MH; Bertram PT; Wong F; Kraft TW; Osawa S
    Mol Vis; 1998 Dec; 4():27. PubMed ID: 9852166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y; Tachibanaki S; Kawamura S
    J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors.
    Raport CJ; Lem J; Makino C; Chen CK; Fitch CL; Hobson A; Baylor D; Simon MI; Hurley JB
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):2932-47. PubMed ID: 8206711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.