These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 12598648)

  • 1. MecA, an adaptor protein necessary for ClpC chaperone activity.
    Schlothauer T; Mogk A; Dougan DA; Bukau B; Turgay K
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2306-11. PubMed ID: 12598648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC.
    Kirstein J; Schlothauer T; Dougan DA; Lilie H; Tischendorf G; Mogk A; Bukau B; Turgay K
    EMBO J; 2006 Apr; 25(7):1481-91. PubMed ID: 16525504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis.
    Turgay K; Hamoen LW; Venema G; Dubnau D
    Genes Dev; 1997 Jan; 11(1):119-28. PubMed ID: 9000055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response.
    Turgay K; Persuh M; Hahn J; Dubnau D
    Mol Microbiol; 2001 Nov; 42(3):717-27. PubMed ID: 11722737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP.
    Kirstein J; Dougan DA; Gerth U; Hecker M; Turgay K
    EMBO J; 2007 Apr; 26(8):2061-70. PubMed ID: 17380125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction.
    Nakano MM; Nakano S; Zuber P
    Mol Microbiol; 2002 Jun; 44(5):1341-9. PubMed ID: 12028382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A regulatory switch involving a Clp ATPase.
    Lazazzera BA; Grossman AD
    Bioessays; 1997 Jun; 19(6):455-8. PubMed ID: 9204762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival.
    Chastanet A; Prudhomme M; Claverys JP; Msadek T
    J Bacteriol; 2001 Dec; 183(24):7295-307. PubMed ID: 11717289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular determinants of MecA as a degradation tag for the ClpCP protease.
    Mei Z; Wang F; Qi Y; Zhou Z; Hu Q; Li H; Wu J; Shi Y
    J Biol Chem; 2009 Dec; 284(49):34366-75. PubMed ID: 19767395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis.
    Molière N; Turgay K
    Res Microbiol; 2009 Nov; 160(9):637-44. PubMed ID: 19781636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis.
    Nakano MM; Hajarizadeh F; Zhu Y; Zuber P
    Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity.
    Andersson FI; Blakytny R; Kirstein J; Turgay K; Bukau B; Mogk A; Clarke AK
    J Biol Chem; 2006 Mar; 281(9):5468-75. PubMed ID: 16361263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanism of the hexameric MecA-ClpC molecular machine.
    Wang F; Mei Z; Qi Y; Yan C; Hu Q; Wang J; Shi Y
    Nature; 2011 Mar; 471(7338):331-5. PubMed ID: 21368759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch.
    Persuh M; Turgay K; Mandic-Mulec I; Dubnau D
    Mol Microbiol; 1999 Aug; 33(4):886-94. PubMed ID: 10447896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulated proteolysis of the alternative sigma factor SigX in Streptococcus mutans: implication in the escape from competence.
    Dong G; Tian XL; Gomez ZA; Li YH
    BMC Microbiol; 2014 Jul; 14():183. PubMed ID: 25005884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor.
    Turgay K; Hahn J; Burghoorn J; Dubnau D
    EMBO J; 1998 Nov; 17(22):6730-8. PubMed ID: 9890793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation.
    Tanner AW; Carabetta VJ; Dubnau D
    Mol Microbiol; 2018 Apr; 108(2):178-186. PubMed ID: 29446505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins.
    Krüger E; Witt E; Ohlmeier S; Hanschke R; Hecker M
    J Bacteriol; 2000 Jun; 182(11):3259-65. PubMed ID: 10809708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium tuberculosis ClpC1: characterization and role of the N-terminal domain in its function.
    Kar NP; Sikriwal D; Rath P; Choudhary RK; Batra JK
    FEBS J; 2008 Dec; 275(24):6149-58. PubMed ID: 19016865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.