BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12598695)

  • 21. Adapting Biased Gene Conversion theory to account for intensive GC-content deterioration in the human genome by novel mutations.
    Paudel R; Fedorova L; Fedorov A
    PLoS One; 2020; 15(4):e0232167. PubMed ID: 32353016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial sequence of the chimpanzee genome and comparison with the human genome.
    Chimpanzee Sequencing and Analysis Consortium
    Nature; 2005 Sep; 437(7055):69-87. PubMed ID: 16136131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences.
    Chen FC; Vallender EJ; Wang H; Tzeng CS; Li WH
    J Hered; 2001; 92(6):481-9. PubMed ID: 11948215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison.
    Taylor J; Tyekucheva S; Zody M; Chiaromonte F; Makova KD
    Mol Biol Evol; 2006 Mar; 23(3):565-73. PubMed ID: 16280537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A low rate of simultaneous double-nucleotide mutations in primates.
    Smith NG; Webster MT; Ellegren H
    Mol Biol Evol; 2003 Jan; 20(1):47-53. PubMed ID: 12519905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expected relationship between the silent substitution rate and the GC content: implications for the evolution of isochores.
    Piganeau G; Mouchiroud D; Duret L; Gautier C
    J Mol Evol; 2002 Jan; 54(1):129-33. PubMed ID: 11734906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A comparative analysis of regulatory regions of the transthyretin gene in the mouse, human, and chimpanzee genomes].
    Nadezhdin EV; Vinogradova TV; Sverdlov ED
    Bioorg Khim; 2004; 30(4):383-8. PubMed ID: 15469012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome.
    Liu G; ; Zhao S; Bailey JA; Sahinalp SC; Alkan C; Tuzun E; Green ED; Eichler EE
    Genome Res; 2003 Mar; 13(3):358-68. PubMed ID: 12618366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fixation biases affecting human SNPs.
    Webster MT; Smith NG
    Trends Genet; 2004 Mar; 20(3):122-6. PubMed ID: 15049304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade.
    Page SL; Goodman M
    Mol Phylogenet Evol; 2001 Jan; 18(1):14-25. PubMed ID: 11161738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CpG mutation rates in the human genome are highly dependent on local GC content.
    Fryxell KJ; Moon WJ
    Mol Biol Evol; 2005 Mar; 22(3):650-8. PubMed ID: 15537806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee.
    Lu J; Wu CI
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):4063-7. PubMed ID: 15728731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of the species-specific mutation rates at the DRB1 locus in humans and chimpanzee.
    Ohashi J; Naka I; Toyoda A; Takasu M; Tokunaga K; Ishida T; Sakaki Y; Hohjoh H
    Tissue Antigens; 2006 Nov; 68(5):427-31. PubMed ID: 17092256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Male-driven biased gene conversion governs the evolution of base composition in human alu repeats.
    Webster MT; Smith NG; Hultin-Rosenberg L; Arndt PF; Ellegren H
    Mol Biol Evol; 2005 Jun; 22(6):1468-74. PubMed ID: 15772377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substantial regional variation in substitution rates in the human genome: importance of GC content, gene density, and telomere-specific effects.
    Arndt PF; Hwa T; Petrov DA
    J Mol Evol; 2005 Jun; 60(6):748-63. PubMed ID: 15959677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triplet repeat length bias and variation in the human transcriptome.
    Molla M; Delcher A; Sunyaev S; Cantor C; Kasif S
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17095-100. PubMed ID: 19805156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of the isochore structure in the scale of chromosome: insight from the mutation bias and fixation bias.
    Li MK; Gu L; Chen SS; Dai JQ; Tao SH
    J Evol Biol; 2008 Jan; 21(1):173-182. PubMed ID: 18005111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The vertebrate genome: isochores and evolution.
    Bernardi G
    Mol Biol Evol; 1993 Jan; 10(1):186-204. PubMed ID: 8450755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SINEs, evolution and genome structure in the opossum.
    Gu W; Ray DA; Walker JA; Barnes EW; Gentles AJ; Samollow PB; Jurka J; Batzer MA; Pollock DD
    Gene; 2007 Jul; 396(1):46-58. PubMed ID: 17442506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms.
    Qu HQ; Lawrence SG; Guo F; Majewski J; Polychronakos C
    BMC Genomics; 2006 Aug; 7():213. PubMed ID: 16916449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.