These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12599279)

  • 1. Involvement of the cerebellum in semantic discrimination: an fMRI study.
    Xiang H; Lin C; Ma X; Zhang Z; Bower JM; Weng X; Gao JH
    Hum Brain Mapp; 2003 Mar; 18(3):208-14. PubMed ID: 12599279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of anterior and posterior structures in lexical-semantic processing: an fMRI study comparing implicit and explicit tasks.
    Ruff I; Blumstein SE; Myers EB; Hutchison E
    Brain Lang; 2008 Apr; 105(1):41-9. PubMed ID: 18279947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study.
    D'Mello AM; Turkeltaub PE; Stoodley CJ
    J Neurosci; 2017 Feb; 37(6):1604-1613. PubMed ID: 28069925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing.
    Roskies AL; Fiez JA; Balota DA; Raichle ME; Petersen SE
    J Cogn Neurosci; 2001 Aug; 13(6):829-43. PubMed ID: 11564326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory.
    Mathiak K; Hertrich I; Grodd W; Ackermann H
    Neuroimage; 2004 Jan; 21(1):154-62. PubMed ID: 14741652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PET study of stimulus- and task-induced semantic processing.
    Noppeney U; Price CJ
    Neuroimage; 2002 Apr; 15(4):927-35. PubMed ID: 11906233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: a functional magnetic resonance imaging study.
    Röder B; Stock O; Neville H; Bien S; Rösler F
    Neuroimage; 2002 Apr; 15(4):1003-14. PubMed ID: 11906240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability of fMRI activation during a phonological and semantic language task in healthy subjects.
    Seghier ML; Lazeyras F; Pegna AJ; Annoni JM; Zimine I; Mayer E; Michel CM; Khateb A
    Hum Brain Mapp; 2004 Nov; 23(3):140-55. PubMed ID: 15449358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of generation mode in fMRI adaptations of semantic fluency: paced production and overt speech.
    Basho S; Palmer ED; Rubio MA; Wulfeck B; Müller RA
    Neuropsychologia; 2007 Apr; 45(8):1697-706. PubMed ID: 17292926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An fMRI investigation of syllable sequence production.
    Bohland JW; Guenther FH
    Neuroimage; 2006 Aug; 32(2):821-41. PubMed ID: 16730195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voxelwise Encoding Models Show That Cerebellar Language Representations Are Highly Conceptual.
    LeBel A; Jain S; Huth AG
    J Neurosci; 2021 Dec; 41(50):10341-10355. PubMed ID: 34732520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional MRI study of semantic and phonological language processing in bilingual subjects: preliminary findings.
    Pillai JJ; Araque JM; Allison JD; Sethuraman S; Loring DW; Thiruvaiyaru D; Ison CB; Balan A; Lavin T
    Neuroimage; 2003 Jul; 19(3):565-76. PubMed ID: 12880788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specialization of phonological and semantic processing in Chinese word reading.
    Booth JR; Lu D; Burman DD; Chou TL; Jin Z; Peng DL; Zhang L; Ding GS; Deng Y; Liu L
    Brain Res; 2006 Feb; 1071(1):197-207. PubMed ID: 16427033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of five fMRI protocols for mapping speech comprehension systems.
    Binder JR; Swanson SJ; Hammeke TA; Sabsevitz DS
    Epilepsia; 2008 Dec; 49(12):1980-97. PubMed ID: 18513352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common and dissociable activation patterns associated with controlled semantic and phonological processing: evidence from FMRI adaptation.
    Gold BT; Balota DA; Kirchhoff BA; Buckner RL
    Cereb Cortex; 2005 Sep; 15(9):1438-50. PubMed ID: 15647526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neuronal infrastructure of speaking.
    Menenti L; Segaert K; Hagoort P
    Brain Lang; 2012 Aug; 122(2):71-80. PubMed ID: 22717280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes in the neural correlates of semantic processing.
    Chou TL; Booth JR; Burman DD; Bitan T; Bigio JD; Lu D; Cone NE
    Neuroimage; 2006 Feb; 29(4):1141-9. PubMed ID: 16275017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossed cerebro-cerebellar language dominance.
    Jansen A; Flöel A; Van Randenborgh J; Konrad C; Rotte M; Förster AF; Deppe M; Knecht S
    Hum Brain Mapp; 2005 Mar; 24(3):165-72. PubMed ID: 15486988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased neural activity during overt and continuous semantic verbal fluency in major depression: mainly a failure to deactivate.
    Backes H; Dietsche B; Nagels A; Stratmann M; Konrad C; Kircher T; Krug A
    Eur Arch Psychiatry Clin Neurosci; 2014 Oct; 264(7):631-45. PubMed ID: 24557502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonetic detail and lateralization of reading-related inner speech and of auditory and somatosensory feedback processing during overt reading.
    Kell CA; Darquea M; Behrens M; Cordani L; Keller C; Fuchs S
    Hum Brain Mapp; 2017 Jan; 38(1):493-508. PubMed ID: 27622923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.