BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12599507)

  • 1. Stereoselective synthesis of L-oliose trisaccharide via iterative alkynol cycloisomerization and acid-catalyzed glycosylation.
    McDonald FE; Wu M
    Org Lett; 2002 Oct; 4(22):3979-81. PubMed ID: 12599507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo approach to 2-deoxy-beta-glycosides: asymmetric syntheses of digoxose and digitoxin.
    Zhou M; O'Doherty GA
    J Org Chem; 2007 Mar; 72(7):2485-93. PubMed ID: 17338573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective synthesis of vancosamine and saccharosamine glycals via tungsten-catalyzed alkynol cycloisomerization.
    Cutchins WW; McDonald FE
    Org Lett; 2002 Mar; 4(5):749-52. PubMed ID: 11869118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective synthesis of d-desosamine and related glycals via tungsten-catalyzed alkynol cycloisomerization.
    Davidson MH; McDonald FE
    Org Lett; 2004 May; 6(10):1601-3. PubMed ID: 15128246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic stereoselective synthesis of β-digitoxosides: direct synthesis of digitoxin and C1'-epi-digitoxin.
    Baryal KN; Adhikari S; Zhu J
    J Org Chem; 2013 Dec; 78(24):12469-76. PubMed ID: 24295510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereospecific Synthesis of the Saccharosamine-Rhamnose-Fucose Fragment Present in Saccharomicin B.
    Bylsma M; Bennett CS
    Org Lett; 2018 Aug; 20(15):4695-4698. PubMed ID: 30015496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stereoselective synthesis of digitoxin and digitoxigen mono- and bisdigitoxoside from digitoxigenin via a palladium-catalyzed glycosylation.
    Zhou M; O'Doherty GA
    Org Lett; 2006 Sep; 8(19):4339-42. PubMed ID: 16956221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matched and mismatched acceptor/donor pairs in the glycosylation of a trisaccharide diol free at O-3 of two N-acylated glucosamine residues.
    Guillemineau M; Auzanneau FI
    Carbohydr Res; 2012 Aug; 357():132-8. PubMed ID: 22704194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Lewis A trisaccharide analogues in which D-glucose and L-rhamnose replace D-galactose and L-fucose, respectively.
    Liao L; Auzanneau FI
    Carbohydr Res; 2006 Oct; 341(14):2426-33. PubMed ID: 16879812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective synthesis of erythro-4-deoxyglycals as scaffolds for target- and diversity-oriented synthesis: new insights into glycal reactivity.
    Moilanen SB; Tan DS
    Org Biomol Chem; 2005 Mar; 3(5):798-803. PubMed ID: 15731865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new synthesis of the oligosaccharide domain of acarbose.
    Périon R; Lemée L; Ferrières V; Duval R; Plusquellec D
    Carbohydr Res; 2003 Nov; 338(24):2779-92. PubMed ID: 14667700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient synthesis of the deoxysugar part of versipelostatin by direct and stereoselective glycosylation and revision of the structure of the trisaccharide unit.
    Tanaka H; Yoshizawa A; Chijiwa S; Ueda JY; Takagi M; Shin-ya K; Takahashi T
    Chem Asian J; 2009 Jul; 4(7):1114-25. PubMed ID: 19347890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brønsted acid-promoted glycosylations of disaccharide glycal substructures of the saccharomicins.
    Balthaser BR; McDonald FE
    Org Lett; 2009 Nov; 11(21):4850-3. PubMed ID: 19780574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Lewis X trisaccharide analogues in which glucose and rhamnose replace N-acetylglucosamine and fucose, respectively.
    Asnani A; Auzanneau FI
    Carbohydr Res; 2003 May; 338(10):1045-54. PubMed ID: 12706970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential one-pot glycosylations using 1-hydroxyl and 1-thiodonors.
    Codée JD; van den Bos LJ; Litjens RE; Overkleeft HS; van Boom JH; van der Marel GA
    Org Lett; 2003 May; 5(11):1947-50. PubMed ID: 12762693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective synthesis of functionalized precursors of the CDEF and CDE 2,6-dideoxy-tetra- and trisaccharide units of durhamycins A and B.
    Durham TB; Roush WR
    Org Lett; 2003 May; 5(11):1875-8. PubMed ID: 12762675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concise synthesis of two trisaccharides related to the cytotoxic triterpenoid saponin isolated from Pithecellobium lucidum.
    Verma P; Mukhopadhyay B
    Carbohydr Res; 2009 Dec; 344(18):2554-8. PubMed ID: 19863949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general strategy for stereoselective glycosylations.
    Kim JH; Yang H; Park J; Boons GJ
    J Am Chem Soc; 2005 Aug; 127(34):12090-7. PubMed ID: 16117550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of the Salmonella type E(1) core trisaccharide as a probe for the generality of 1-(benzenesulfinyl)piperidine/triflic anhydride combination for glycosidic bond formation from thioglycosides.
    Crich D; Li H
    J Org Chem; 2002 Jul; 67(14):4640-6. PubMed ID: 12098270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First synthesis of Bacillus cereus Ch HF-PS cell wall trisaccharide repeating unit.
    Podilapu AR; Kulkarni SS
    Org Lett; 2014 Aug; 16(16):4336-9. PubMed ID: 25101800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.