These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1260019)

  • 21. Thermolysis of coenzymes B12 at physiological temperatures: activation parameters for cobalt-carbon bond homolysis and a quantitative analysis of the perturbation of the homolysis equilibrium by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Brown KL; Zou X
    J Inorg Biochem; 1999; 77(3-4):185-95. PubMed ID: 10643658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lactobacillus leichmannii and Escherichia coli ribonucleotide reductases: chemical and structural similarities.
    Lin AI; Ashley GW; Stubbe J
    Cold Spring Harb Symp Quant Biol; 1987; 52():587-96. PubMed ID: 3331345
    [No Abstract]   [Full Text] [Related]  

  • 23. Inactivation of Lactobacillus leichmannii ribonucleotide reductase by 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate: adenosylcobalamin destruction and formation of a nucleotide-based radical.
    Lohman GJ; Gerfen GJ; Stubbe J
    Biochemistry; 2010 Feb; 49(7):1396-403. PubMed ID: 20088568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechanism of Lactobacillus leichmannii ribonucleotide reductase. Evidence for 3' carbon-hydrogen bond cleavage and a unique role for coenzyme B12.
    Ashley GW; Harris G; Stubbe J
    J Biol Chem; 1986 Mar; 261(9):3958-64. PubMed ID: 3512563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribonucleotide reduction and the possible role of cobalamin in evolution.
    Dickman SR
    J Mol Evol; 1977 Dec; 10(3):251-60. PubMed ID: 599575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A possible new class of ribonucleotide reductase from Methanobacterium thermoautotrophicum.
    Sze IS; McFarlan SC; Spormann A; Hogenkamp HP; Follmann H
    Biochem Biophys Res Commun; 1992 Apr; 184(2):1101-7. PubMed ID: 1575730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of B12-dependent ribonucleotide reductase.
    Stubbe JA
    Mol Cell Biochem; 1983; 50(1):25-45. PubMed ID: 6341812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribonucleoside 5'-thiodiphosphates as substrates for Escherichia coli ribonucleotide reductase.
    von Döbeln U; Eckstein F
    Eur J Biochem; 1974 Apr; 43(2):215-20. PubMed ID: 4151721
    [No Abstract]   [Full Text] [Related]  

  • 29. Enzymatic ribonucleotide reduction in wheat.
    Müller H; Wahl R; Kuntz I; Follmann H
    Hoppe Seylers Z Physiol Chem; 1973; 354(10-11):1299-303. PubMed ID: 4154887
    [No Abstract]   [Full Text] [Related]  

  • 30. On the mechanism of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Evidence for 3' C--H bond cleavage.
    Stubbe J; Ackles D; Segal R; Blakley RL
    J Biol Chem; 1981 May; 256(10):4843-6. PubMed ID: 7014560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An affinity adsorbent containing deoxyguanosine 5'-triphosphate linked to sepharose and its use for large scale preparation of ribonucleotide reductase of Lactobacillus leichmannii.
    Hoffmann PJ; Blakley RL
    Biochemistry; 1975 Nov; 14(22):4804-12. PubMed ID: 241389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of Lactobacillus leichmannii ribonucleotide reductase by 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate: covalent modification.
    Lohman GJ; Stubbe J
    Biochemistry; 2010 Feb; 49(7):1404-17. PubMed ID: 20088569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenosylcobalamin-dependent ribonucleotide reductase from the blue-green alga, Anabaena sp. Purification and partial characterization.
    Gleason FK; Frick TD
    J Biol Chem; 1980 Aug; 255(16):7728-33. PubMed ID: 6772640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribonucleotide reductase from regenerating rat liver. II. Substrate phosphorylation level and effect of deoxyadenosine triphosphate.
    Larsson A
    Biochim Biophys Acta; 1973 Nov; 324(4):447-51. PubMed ID: 4543472
    [No Abstract]   [Full Text] [Related]  

  • 35. Inactivation of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii by 2'-chloro-2'-deoxyuridine 5'-triphosphate: a 3'-2' hydrogen transfer during the formation of 3'-keto-2'-deoxyuridine 5'-triphosphate.
    Ashley GW; Harris G; Stubbe JA
    Biochemistry; 1988 Oct; 27(20):7841-5. PubMed ID: 3061462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of ribonucleotide reductase with ribonucleotide analogs.
    Follmann H; Hogenkamp HP
    Biochemistry; 1971 Jan; 10(1):186-92. PubMed ID: 5538605
    [No Abstract]   [Full Text] [Related]  

  • 37. NMR observations of 13C-enriched coenzyme B12 bound to the ribonucleotide reductase from Lactobacillus leichmannii.
    Brown KL; Li J; Zou X
    Inorg Chem; 2006 Nov; 45(23):9172-4. PubMed ID: 17083212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ribonucleotide reductase activity in vitamin B12-deficient Euglena gracilis.
    Carell EF; Seeger JW
    Biochem J; 1980 May; 188(2):573-6. PubMed ID: 6772171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbiological activities of nucleotide loop-modified analogues of vitamin B12.
    Ishida A; Kanefusa H; Fujita H; Toraya T
    Arch Microbiol; 1994; 161(4):293-9. PubMed ID: 8002712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of ribonucleotides.
    Thelander L; Reichard P
    Annu Rev Biochem; 1979; 48():133-58. PubMed ID: 382982
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.