BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12600211)

  • 1. Evaluating the potential of fluorinated tyrosines as spectroscopic probes of local protein environments: a UV resonance Raman study.
    Reid PJ; Loftus C; Beeson CC;
    Biochemistry; 2003 Mar; 42(8):2441-8. PubMed ID: 12600211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration by ultraviolet resonance Raman spectroscopy of differences in DNA organization and interactions in filamentous viruses Pf1 and fd.
    Wen ZQ; Armstrong A; Thomas GJ
    Biochemistry; 1999 Mar; 38(10):3148-56. PubMed ID: 10074370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitration of internal tyrosine of cytochrome c probed by resonance Raman scattering.
    Quaroni L; Smith WE
    Biospectroscopy; 1999; 5(5 Suppl):S71-6. PubMed ID: 10512540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine.
    Nagai M; Wajcman H; Lahary A; Nakatsukasa T; Nagatomo S; Kitagawa T
    Biochemistry; 1999 Jan; 38(4):1243-51. PubMed ID: 9930984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New structural insights from Raman spectroscopy of proteins and their assemblies.
    Thomas GJ
    Biopolymers; 2002; 67(4-5):214-25. PubMed ID: 12012434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes that use tyrosyl radicals in catalysis.
    Seyedsayamdost MR; Reece SY; Nocera DG; Stubbe J
    J Am Chem Soc; 2006 Feb; 128(5):1569-79. PubMed ID: 16448128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes during the photocycle of photoactive yellow protein monitored by ultraviolet resonance raman spectra of tyrosine and tryptophan.
    El-Mashtoly SF; Yamauchi S; Kumauchi M; Hamada N; Tokunaga F; Unno M
    J Phys Chem B; 2005 Dec; 109(49):23666-73. PubMed ID: 16375346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet resonance Raman spectroscopy of folded and unfolded states of an integral membrane protein.
    Sanchez KM; Neary TJ; Kim JE
    J Phys Chem B; 2008 Aug; 112(31):9507-11. PubMed ID: 18588328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds.
    Kneipp J; Balakrishnan G; Chen R; Shen TJ; Sahu SC; Ho NT; Giovannelli JL; Simplaceanu V; Ho C; Spiro TG
    J Mol Biol; 2006 Feb; 356(2):335-53. PubMed ID: 16368110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV near-resonance Raman spectroscopic study of 1,1'-bi-2-naphthol solutions.
    Li ZY; Chen DM; He TJ; Liu FC
    J Phys Chem A; 2007 Jun; 111(22):4767-75. PubMed ID: 17500545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutagenesis-free approach to assignment of (19)F NMR resonances in biosynthetically labeled proteins.
    Kitevski-LeBlanc JL; Al-Abdul-Wahid MS; Prosser RS
    J Am Chem Soc; 2009 Feb; 131(6):2054-5. PubMed ID: 19173647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UVRR spectroscopic studies of valinomycin complex formation in different solvents.
    Ozdemir A; Lednev IK; Asher SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):19-26. PubMed ID: 15556416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm.
    Wen ZQ; Thomas GJ
    Biopolymers; 1998 Mar; 45(3):247-56. PubMed ID: 9465787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsecond melting of a folding intermediate in a coiled-coil peptide, monitored by T-jump/UV Raman spectroscopy.
    Balakrishnan G; Hu Y; Case MA; Spiro TG
    J Phys Chem B; 2006 Oct; 110(40):19877-83. PubMed ID: 17020373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and spectroscopic characterization of the covalent binding of heme to cytochrome b6.
    de Vitry C; Desbois A; Redeker V; Zito F; Wollman FA
    Biochemistry; 2004 Apr; 43(13):3956-68. PubMed ID: 15049703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Picosecond protein response to the chromophore isomerization of photoactive yellow protein: selective observation of tyrosine and tryptophan residues by time-resolved ultraviolet resonance Raman spectroscopy.
    Mizuno M; Hamada N; Tokunaga F; Mizutani Y
    J Phys Chem B; 2007 Jun; 111(23):6293-6. PubMed ID: 17523627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman resonance effect in liquid water.
    Pastorczak M; Kozanecki M; Ulanski J
    J Phys Chem A; 2008 Oct; 112(43):10705-7. PubMed ID: 18834100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV resonance Raman study of TTR(105-115) structural evolution as a function of temperature.
    Pieridou G; Avgousti-Menelaou C; Tamamis P; Archontis G; Hayes SC
    J Phys Chem B; 2011 Apr; 115(14):4088-98. PubMed ID: 21428385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revised vibrational band assignments for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile based on ab initio, DFT and normal coordinate calculations.
    Hiremath CS; Kalkoti GB; Aralakkanavar MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):200-4. PubMed ID: 19560961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.