These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 12600212)
21. Repair of oxidative DNA damage--an important factor reducing cancer risk. Minireview. Brozmanová J; Dudás A; Henriques JA Neoplasma; 2001; 48(2):85-93. PubMed ID: 11478699 [TBL] [Abstract][Full Text] [Related]
22. Half-life and DNA strand scission products of 2-deoxyribonolactone oxidative DNA damage lesions. Zheng Y; Sheppard TL Chem Res Toxicol; 2004 Feb; 17(2):197-207. PubMed ID: 14967007 [TBL] [Abstract][Full Text] [Related]
23. Escherichia coli MutY and Fpg utilize a processive mechanism for target location. Francis AW; David SS Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293 [TBL] [Abstract][Full Text] [Related]
24. The 2-deoxyribonolactone lesion produced in DNA by neocarzinostatin and other damaging agents forms cross-links with the base-excision repair enzyme endonuclease III. Hashimoto M; Greenberg MM; Kow YW; Hwang JT; Cunningham RP J Am Chem Soc; 2001 Apr; 123(13):3161-2. PubMed ID: 11457038 [No Abstract] [Full Text] [Related]
25. Psoralen-induced DNA adducts are substrates for the base excision repair pathway in human cells. Couvé-Privat S; Macé G; Rosselli F; Saparbaev MK Nucleic Acids Res; 2007; 35(17):5672-82. PubMed ID: 17715144 [TBL] [Abstract][Full Text] [Related]
26. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles. Ishchenko AA; Deprez E; Maksimenko A; Brochon JC; Tauc P; Saparbaev MK Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2564-9. PubMed ID: 16473948 [TBL] [Abstract][Full Text] [Related]
27. Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts. Kuluncsics Z; Perdiz D; Brulay E; Muel B; Sage E J Photochem Photobiol B; 1999 Mar; 49(1):71-80. PubMed ID: 10365447 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Luo M; Kelley MR Anticancer Res; 2004; 24(4):2127-34. PubMed ID: 15330152 [TBL] [Abstract][Full Text] [Related]
29. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means. Mol CD; Hosfield DJ; Tainer JA Mutat Res; 2000 Aug; 460(3-4):211-29. PubMed ID: 10946230 [TBL] [Abstract][Full Text] [Related]
30. Structure of T4 pyrimidine dimer glycosylase in a reduced imine covalent complex with abasic site-containing DNA. Golan G; Zharkov DO; Grollman AP; Dodson ML; McCullough AK; Lloyd RS; Shoham G J Mol Biol; 2006 Sep; 362(2):241-58. PubMed ID: 16916523 [TBL] [Abstract][Full Text] [Related]
31. Initiation of repair of DNA-polypeptide cross-links by the UvrABC nuclease. Minko IG; Kurtz AJ; Croteau DL; Van Houten B; Harris TM; Lloyd RS Biochemistry; 2005 Mar; 44(8):3000-9. PubMed ID: 15723543 [TBL] [Abstract][Full Text] [Related]
32. The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites. Tanihigashi H; Yamada A; Igawa E; Ikeda S Biochem Biophys Res Commun; 2006 Sep; 347(4):889-94. PubMed ID: 16857169 [TBL] [Abstract][Full Text] [Related]
33. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of action of Escherichia coli formamidopyrimidine N-glycosylase: role of K155 in substrate binding and product release. Rabow L; Venkataraman R; Kow YW Prog Nucleic Acid Res Mol Biol; 2001; 68():223-34. PubMed ID: 11554299 [TBL] [Abstract][Full Text] [Related]
35. Action of human endonucleases III and VIII upon DNA-containing tandem dihydrouracil. Ali MM; Hazra TK; Hong D; Kow YW DNA Repair (Amst); 2005 Jun; 4(6):679-86. PubMed ID: 15907775 [TBL] [Abstract][Full Text] [Related]
36. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. Sung JS; Demple B FEBS J; 2006 Apr; 273(8):1620-9. PubMed ID: 16623699 [TBL] [Abstract][Full Text] [Related]
37. [Base excision repair: DNA glycosylase and AP endonuclease]. Ikeda S; Seki S Tanpakushitsu Kakusan Koso; 2001 Jun; 46(8 Suppl):916-23. PubMed ID: 11436317 [No Abstract] [Full Text] [Related]
38. Substrate specificity of human endonuclease III (hNTH1). Effect of human APE1 on hNTH1 activity. Marenstein DR; Chan MK; Altamirano A; Basu AK; Boorstein RJ; Cunningham RP; Teebor GW J Biol Chem; 2003 Mar; 278(11):9005-12. PubMed ID: 12519758 [TBL] [Abstract][Full Text] [Related]
39. Characterization of two independent amino acid substitutions that disrupt the DNA repair functions of the yeast Apn1. Jilani A; Vongsamphanh R; Leduc A; Gros L; Saparbaev M; Ramotar D Biochemistry; 2003 Jun; 42(21):6436-45. PubMed ID: 12767225 [TBL] [Abstract][Full Text] [Related]
40. In vitro effects of a C4'-oxidized abasic site on DNA polymerases. Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]