These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 12600214)

  • 1. X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillus subtilis: the coordination properties of the copper ion.
    Banci L; Bertini I; Del Conte R; Mangani S; Meyer-Klaucke W
    Biochemistry; 2003 Mar; 42(8):2467-74. PubMed ID: 12600214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper.
    Banci L; Bertini I; Del Conte R
    Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis.
    Kihlken MA; Leech AP; Le Brun NE
    Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper trafficking: the solution structure of Bacillus subtilis CopZ.
    Banci L; Bertini I; Del Conte R; Markey J; Ruiz-Dueñas FJ
    Biochemistry; 2001 Dec; 40(51):15660-8. PubMed ID: 11747441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA.
    Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM
    Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis.
    Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L
    Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR structure and metal interactions of the CopZ copper chaperone.
    Wimmer R; Herrmann T; Solioz M; Wüthrich K
    J Biol Chem; 1999 Aug; 274(32):22597-603. PubMed ID: 10428839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface.
    Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ
    Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insight into the distinct properties of copper transport by the Helicobacter pylori CopP protein.
    Park SJ; Jung YS; Kim JS; Seo MD; Lee BJ
    Proteins; 2008 May; 71(2):1007-19. PubMed ID: 18214986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae.
    Arnesano F; Banci L; Bertini I; Felli IC; Luchinat C; Thompsett AR
    J Am Chem Soc; 2003 Jun; 125(24):7200-8. PubMed ID: 12797793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance.
    Solovieva IM; Entian KD
    FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tetranuclear Cu(I) cluster in the metallochaperone protein CopZ.
    Hearnshaw S; West C; Singleton C; Zhou L; Kihlken MA; Strange RW; Le Brun NE; Hemmings AM
    Biochemistry; 2009 Oct; 48(40):9324-6. PubMed ID: 19746989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis.
    Kihlken MA; Singleton C; Le Brun NE
    J Biol Inorg Chem; 2008 Aug; 13(6):1011-23. PubMed ID: 18496720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of XAS and NMR techniques for the structure determination of metalloproteins. Examples from the study of copper transport proteins.
    Banci L; Bertini I; Mangani S
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):94-7. PubMed ID: 15616371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p.
    Andruzzi L; Nakano M; Nilges MJ; Blackburn NJ
    J Am Chem Soc; 2005 Nov; 127(47):16548-58. PubMed ID: 16305244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ.
    Zhou L; Singleton C; Le Brun NE
    Biochem J; 2008 Aug; 413(3):459-65. PubMed ID: 18419582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.