BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 12600346)

  • 1. In situ chondrocyte deformation with physiological compression of the feline patellofemoral joint.
    Clark AL; Barclay LD; Matyas JR; Herzog W
    J Biomech; 2003 Apr; 36(4):553-68. PubMed ID: 12600346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression.
    Clark AL; Leonard TR; Barclay LD; Matyas JR; Herzog W
    Osteoarthritis Cartilage; 2006 Feb; 14(2):120-30. PubMed ID: 16242973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation of chondrocytes in articular cartilage under compressive load: a morphological study.
    Kääb MJ; Richards RG; Ito K; ap Gwynn I; Nötzli HP
    Cells Tissues Organs; 2003; 175(3):133-9. PubMed ID: 14663156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression.
    Clark AL; Leonard TR; Barclay LD; Matyas JR; Herzog W
    Osteoarthritis Cartilage; 2005 Dec; 13(12):1100-14. PubMed ID: 16165376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1999 Jun; 32(6):563-72. PubMed ID: 10332619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ chondrocyte viscoelasticity.
    Han SK; Madden R; Abusara Z; Herzog W
    J Biomech; 2012 Sep; 45(14):2450-6. PubMed ID: 22884037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior cruciate ligament transection of rabbits alters composition, structure and biomechanics of articular cartilage and chondrocyte deformation 2 weeks post-surgery in a site-specific manner.
    Ojanen SP; Finnilä MAJ; Mäkelä JTA; Saarela K; Happonen E; Herzog W; Saarakkala S; Korhonen RK
    J Biomech; 2020 Jan; 98():109450. PubMed ID: 31740016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of compressive strain on cell viability in statically loaded articular cartilage.
    Torzilli PA; Deng XH; Ramcharan M
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):123-32. PubMed ID: 16506016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking.
    Tanska P; Mononen ME; Korhonen RK
    J Biomech; 2015 Jun; 48(8):1397-406. PubMed ID: 25795269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading.
    Herberhold C; Faber S; Stammberger T; Steinlechner M; Putz R; Englmeier KH; Reiser M; Eckstein F
    J Biomech; 1999 Dec; 32(12):1287-95. PubMed ID: 10569707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis.
    Herzog W; Diet S; Suter E; Mayzus P; Leonard TR; Müller C; Wu JZ; Epstein M
    J Biomech; 1998 Dec; 31(12):1137-45. PubMed ID: 9882046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage and chondrocyte response to extreme muscular loading and impact loading: Can in vivo pre-load decrease impact-induced cell death?
    Bourne DA; Moo EK; Herzog W
    Clin Biomech (Bristol, Avon); 2015 Jul; 30(6):537-45. PubMed ID: 25957254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T.
    Horng A; Raya JG; Stockinger M; Notohamiprodjo M; Pietschmann M; Hoehne-Hueckstaedt U; Glitsch U; Ellegast R; Hering KG; Glaser C
    Eur Radiol; 2015 Jun; 25(6):1731-41. PubMed ID: 25595640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelationship of cartilage composition and chondrocyte mechanics after a partial meniscectomy in the rabbit knee joint - Experimental and numerical analysis.
    Ronkainen AP; Tanska P; Fick JM; Herzog W; Korhonen RK
    J Biomech; 2019 Jan; 83():65-75. PubMed ID: 30501912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of compressive loading magnitude on in situ chondrocyte calcium signaling.
    Madden RM; Han SK; Herzog W
    Biomech Model Mechanobiol; 2015 Jan; 14(1):135-42. PubMed ID: 24853775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study.
    Guilak F; Ratcliffe A; Mow VC
    J Orthop Res; 1995 May; 13(3):410-21. PubMed ID: 7602402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of stress magnitude on water loss and chondrocyte viability in impacted articular cartilage.
    Milentijevic D; Helfet DL; Torzilli PA
    J Biomech Eng; 2003 Oct; 125(5):594-601. PubMed ID: 14618918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.