These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12600352)

  • 1. Estimation of discretization errors in contact pressure measurements.
    Fregly BJ; Sawyer WG
    J Biomech; 2003 Apr; 36(4):609-13. PubMed ID: 12600352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint.
    Liau JJ; Cheng CK; Huang CH; Lo WH
    Clin Biomech (Bristol); 2002; 17(9-10):698-704. PubMed ID: 12446166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements.
    Fregly BJ; Bei Y; Sylvester ME
    J Biomech; 2003 Nov; 36(11):1659-68. PubMed ID: 14522207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.
    Halloran JP; Easley SK; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2005 Oct; 127(5):813-8. PubMed ID: 16248311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro method for assessing the biomechanics of the patellofemoral joint following total knee arthroplasty.
    Coles LG; Gheduzzi S; Miles AW
    Proc Inst Mech Eng H; 2014 Dec; 228(12):1217-26. PubMed ID: 25515222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved method of computing the wear factor for total hip prostheses involving the variation of relative motion and contact pressure with location on the bearing surface.
    Saikko V; Calonius O
    J Biomech; 2003 Dec; 36(12):1819-27. PubMed ID: 14614935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations.
    Villa T; Migliavacca F; Gastaldi D; Colombo M; Pietrabissa R
    J Biomech; 2004 Jan; 37(1):45-53. PubMed ID: 14672567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new sensor for measurement of dynamic contact stress in the hip.
    Rudert MJ; Ellis BJ; Henak CR; Stroud NJ; Pederson DR; Weiss JA; Brown TD
    J Biomech Eng; 2014 Mar; 136(3):035001. PubMed ID: 24763632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of capacitive versus resistive joint contact stress sensors.
    Martinelli L; Hurschler C; Rosenbaum D
    Clin Orthop Relat Res; 2006 Jun; 447():214-20. PubMed ID: 16672899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and repeatability of a pressure measurement system in the patellofemoral joint.
    Wilson DR; Apreleva MV; Eichler MJ; Harrold FR
    J Biomech; 2003 Dec; 36(12):1909-15. PubMed ID: 14614944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of calibration method on Tekscan sensor accuracy.
    Brimacombe JM; Wilson DR; Hodgson AJ; Ho KC; Anglin C
    J Biomech Eng; 2009 Mar; 131(3):034503. PubMed ID: 19154074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of circular contact area measurements with thin-film pressure sensors.
    Drewniak EI; Crisco JJ; Spenciner DB; Fleming BC
    J Biomech; 2007; 40(11):2569-72. PubMed ID: 17270193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explicit finite element modeling of total knee replacement mechanics.
    Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):323-31. PubMed ID: 15598460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film.
    Harris ML; Morberg P; Bruce WJ; Walsh WR
    J Biomech; 1999 Sep; 32(9):951-8. PubMed ID: 10460132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine.
    Wilson DC; Niosi CA; Zhu QA; Oxland TR; Wilson DR
    J Biomech; 2006; 39(2):348-53. PubMed ID: 16321637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational wear prediction of a total knee replacement from in vivo kinematics.
    Fregly BJ; Sawyer WG; Harman MK; Banks SA
    J Biomech; 2005 Feb; 38(2):305-14. PubMed ID: 15598458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and application of thin film pressure sensors.
    Valdevit A; Ortega-Garcia J; Kambic H; Kuroda R; Elster T; Parker RD
    Biomed Mater Eng; 1999; 9(2):81-8. PubMed ID: 10524291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of stair descent loading on ultra-high molecular weight polyethylene wear in a force-controlled knee simulator.
    Benson LC; DesJardins JD; Harman MK; LaBerge M
    Proc Inst Mech Eng H; 2002; 216(6):409-18. PubMed ID: 12502005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligament balancing in TKA: evaluation of a force-sensing device and the influence of patellar eversion and ligament release.
    Crottet D; Kowal J; Sarfert SA; Maeder T; Bleuler H; Nolte LP; Dürselen L
    J Biomech; 2007; 40(8):1709-15. PubMed ID: 17094997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator.
    Halloran JP; Clary CW; Maletsky LP; Taylor M; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2010 Aug; 132(8):081010. PubMed ID: 20670059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.