These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12600668)

  • 1. Functional voltage-gated Ca2+ channels in muscle fibers of the platyhelminth Dugesia tigrina.
    Cobbett P; Day TA
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Mar; 134(3):593-605. PubMed ID: 12600668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parapodial swim muscle in Aplysia brasiliana. I. Voltage-gated membrane currents in isolated muscle fibers.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1517-30. PubMed ID: 8890271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonergic modulation of a voltage-gated calcium current in parapodial swim muscle from Aplysia brasiliana.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1997 Mar; 77(3):1496-502. PubMed ID: 9084614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of calcium-permeable non-N-methyl-D-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro.
    Taschenberger H; Grantyn R
    Neuroscience; 1998 Jun; 84(3):877-96. PubMed ID: 9579791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium entry in rabbit corneal epithelial cells: evidence for a nonvoltage dependent pathway.
    Rich A; Rae JL
    J Membr Biol; 1995 Mar; 144(2):177-84. PubMed ID: 7541085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic currents and inhibitory effects of glibenclamide in seminal vesicle smooth muscle cells.
    Sadraei H; Beech DJ
    Br J Pharmacol; 1995 Aug; 115(8):1447-54. PubMed ID: 8564204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium and calcium channels in bovine chromaffin cells.
    Fenwick EM; Marty A; Neher E
    J Physiol; 1982 Oct; 331():599-635. PubMed ID: 6296372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parapodial swim muscle in Aplysia brasiliana. II. Ca(2+)-dependent K+ currents in isolated muscle fibers and their blockade by chloride substitutes.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1531-9. PubMed ID: 8890272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons.
    Tombaugh GC; Somjen GG
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):719-32. PubMed ID: 8799894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silent calcium channels in skeletal muscle fibers of the crustacean Atya lanipes.
    Monterrubio J; Lizardi L; Zuazaga C
    J Membr Biol; 2000 Jan; 173(1):9-17. PubMed ID: 10612687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the diuretic agent indapamide on Na+, transient outward, and delayed rectifier currents in canine atrial myocytes.
    Lu Y; Yue L; Wang Z; Nattel S
    Circ Res; 1998 Jul; 83(2):158-66. PubMed ID: 9686755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea.
    Hisada T; Kurachi Y; Sugimoto T
    Pflugers Arch; 1990 Apr; 416(1-2):151-61. PubMed ID: 2162028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle.
    Neelands TR; Herson PS; Jacobson D; Adelman JP; Maylie J
    J Physiol; 2001 Oct; 536(Pt 2):397-407. PubMed ID: 11600675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.
    Tricarico D; Barbieri M; Conte Camerino D
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1167-71. PubMed ID: 11504816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina.
    Burrone J; Lagnado L
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):571-84. PubMed ID: 9457636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels.
    Van Goor F; Krsmanovic LZ; Catt KJ; Stojilkovic SS
    Mol Endocrinol; 1999 Apr; 13(4):587-603. PubMed ID: 10194765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.
    Islam MS; Larsson O; Nilsson T; Berggren PO
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):679-86. PubMed ID: 7702559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture.
    Nuss HB; Marban E
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):265-79. PubMed ID: 7799226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.