BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12600674)

  • 1. Effects of potassium deficiency on potassium, polyamines and amino acids in mouse tissues.
    Cremades A; Sanchez-Capelo A; Monserrat A; Monserrat F; Peñafiel R
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Mar; 134(3):647-54. PubMed ID: 12600674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary subacute zinc deficiency and potassium metabolism.
    Wouwe JP; Veldhuizen M
    Biol Trace Elem Res; 1994 Dec; 46(3):261-8. PubMed ID: 7702980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of polyamine reutilization in depletion of cellular stores of polyamines in non-proliferating tissues.
    Bolkenius FN; Seiler N
    Biochim Biophys Acta; 1987 Jan; 923(1):125-35. PubMed ID: 3099850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of dietary arginine on sexual dimorphism of arginine metabolism in mice.
    Ruzafa C; Monserrat F; Cremades A; Peñafiel R
    J Nutr Biochem; 2003 Jun; 14(6):333-41. PubMed ID: 12873715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon.
    Espe M; Andersen SM; Holen E; Rønnestad I; Veiseth-Kent E; Zerrahn JE; Aksnes A
    Br J Nutr; 2014 Oct; 112(8):1274-85. PubMed ID: 25196630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of potassium deficiency on growth and protein synthesis in skeletal muscle and the heart of rats.
    Dørup I; Clausen T
    Br J Nutr; 1989 Sep; 62(2):269-84. PubMed ID: 2819012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).
    Andersen SM; Holen E; Aksnes A; Rønnestad I; Zerrahn JE; Espe M
    Br J Nutr; 2013 Dec; 110(11):1968-77. PubMed ID: 23656796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dietary lysine on polyamine synthesis in the chick.
    Bedford MR; Smith TK; Summers JD
    J Nutr; 1987 Nov; 117(11):1852-8. PubMed ID: 3119798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal development of ornithine decarboxylase and polyamines in the mouse kidney: influence of testosterone.
    Sánchez-Capelo A; Peñafiel R; Tovar A; Galindo JD; Cremades A
    Biol Neonate; 1994; 66(2-3):119-27. PubMed ID: 7993945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium deficiency decreases the capacity for urea synthesis and markedly increases ammonia in rats.
    Mikkelsen ACD; Thomsen KL; Vilstrup H; Aamann L; Jones H; Mookerjee RP; Hamilton-Dutoit S; Frystyk J; Aagaard NK
    Am J Physiol Gastrointest Liver Physiol; 2021 Apr; 320(4):G474-G483. PubMed ID: 33404376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats.
    Brosnan ME; Roebothan BV; Hall DE
    Biochem J; 1980 Aug; 190(2):395-403. PubMed ID: 6162456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamines and their biosynthetic decarboxylases in various tissues of the young rat during undernutrition.
    McAnulty PA; Williams JP
    Br J Nutr; 1977 Jul; 38(1):73-86. PubMed ID: 889774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium-induced changes in muscle free amino acid concentrations in chicks.
    Robbins KR; Hitchcock JP; Mitchell NS
    J Nutr; 1982 Nov; 112(11):2122-9. PubMed ID: 6813438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chronic K+ deficiency on contractile properties of soleus muscle in rats: evidence of sex differences.
    Piyachaturawat P; Muchimapura S; Sophasan S; Jariyawat S; Pholpramool C; Satayavivad J; Endou H
    Clin Exp Pharmacol Physiol; 1999 Apr; 26(4):323-9. PubMed ID: 10225143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The IGF-I axis in kidney and skeletal muscle of potassium deficient rats.
    Hsu FW; Tsao T; Rabkin R
    Kidney Int; 1997 Aug; 52(2):363-70. PubMed ID: 9263991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary methionine, arginine and ornithine on the metabolism and accumulation of polyamines, S-adenosylmethionine and macromolecules in rat liver and skeletal muscle.
    Smith TK; Hyvönen T; Pajula RL; Eloranta TO
    Ann Nutr Metab; 1987; 31(3):133-45. PubMed ID: 3109311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in renal function, membrane protein metabolism, and Na,K-ATPase activity and abundance in hypokalemic F344 x BNF(1) rats.
    Eiam-Ong S; Sabatini S
    Gerontology; 1999; 45(5):254-64. PubMed ID: 10460986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration.
    Chen P; Guzman JP; Leong PK; Yang LE; Perianayagam A; Babilonia E; Ho JS; Youn JH; Wang WH; McDonough AA
    Am J Physiol Cell Physiol; 2006 May; 290(5):C1355-63. PubMed ID: 16354756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic amino acid accumulation in potassium-depleted rat muscle.
    Arnauld J; Lachance PA
    J Nutr; 1980 Dec; 110(12):2480-9. PubMed ID: 6777472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection against β adrenoceptor agonist reduction of plasma potassium in severe but not in moderate hypokalemia.
    Tran CT; Kjeldsen K
    Fundam Clin Pharmacol; 2011 Aug; 25(4):452-61. PubMed ID: 21401714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.