BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12600682)

  • 1. Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis.
    Watanabe M; Henmi K; Ogawa K; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Feb; 134(2):227-34. PubMed ID: 12600682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of reactive oxygen stress in cadmium-induced cellular damage in Euglena gracilis.
    Watanabe M; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Apr; 131(4):491-500. PubMed ID: 11976064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.
    Peng C; Arthur DM; Sichani HT; Xia Q; Ng JC
    Chemosphere; 2013 Nov; 93(10):2381-9. PubMed ID: 24034892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation.
    Oh SH; Lim SC
    Toxicol Appl Pharmacol; 2006 May; 212(3):212-23. PubMed ID: 16169029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium-induced synthesis of HSP70 and a role of glutathione in Euglena gracilis.
    Watanabe M; Suzuki T
    Redox Rep; 2004; 9(6):349-53. PubMed ID: 15720831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium-induced abnormality in strains of Euglena gracilis: morphological alteration and its prevention by zinc and cyanocobalamin.
    Watanabe M; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Sep; 130(1):29-39. PubMed ID: 11544141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana.
    Bi Y; Chen W; Zhang W; Zhou Q; Yun L; Xing D
    Biol Cell; 2009 Aug; 101(11):629-43. PubMed ID: 19453296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection of betulin against cadmium-induced apoptosis in hepatoma cells.
    Oh SH; Choi JE; Lim SC
    Toxicology; 2006 Mar; 220(1):1-12. PubMed ID: 16436312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.
    Santiago-Martínez MG; Lira-Silva E; Encalada R; Pineda E; Gallardo-Pérez JC; Zepeda-Rodriguez A; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R
    J Hazard Mater; 2015 May; 288():104-12. PubMed ID: 25698571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial permeability transition increases reactive oxygen species production and induces DNA fragmentation in human spermatozoa.
    Treulen F; Uribe P; Boguen R; Villegas JV
    Hum Reprod; 2015 Apr; 30(4):767-76. PubMed ID: 25662811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium- and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy.
    Rocchetta I; Küpper H
    New Phytol; 2009; 182(2):405-420. PubMed ID: 19210715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation.
    Guo H; Chen H; Hong C; Jiang D; Zheng B
    Ecotoxicol Environ Saf; 2017 Jul; 141():119-128. PubMed ID: 28324818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts.
    Shih CM; Ko WC; Wu JS; Wei YH; Wang LF; Chang EE; Lo TY; Cheng HH; Chen CT
    J Cell Biochem; 2004 Feb; 91(2):384-97. PubMed ID: 14743397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis.
    Avilés C; Loza-Tavera H; Terry N; Moreno-Sánchez R
    Arch Microbiol; 2003 Jul; 180(1):1-10. PubMed ID: 12739103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity.
    Yang PM; Chen HC; Tsai JS; Lin LY
    Chem Res Toxicol; 2007 Mar; 20(3):406-15. PubMed ID: 17323976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium induced mitochondrial injury and apoptosis in vero cells: protective effect of diallyl tetrasufide from garlic.
    Murugavel P; Pari L; Sitasawad SL; Kumar S; Kumar S
    Int J Biochem Cell Biol; 2007; 39(1):161-70. PubMed ID: 16971165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cadmium on murine thymocytes: potentiation of apoptosis and oxidative stress.
    Pathak N; Khandelwal S
    Toxicol Lett; 2006 Aug; 165(2):121-32. PubMed ID: 16563667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death.
    Tirlapur UK; König K; Peuckert C; Krieg R; Halbhuber KJ
    Exp Cell Res; 2001 Feb; 263(1):88-97. PubMed ID: 11161708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium induces reactive oxygen species-dependent apoptosis in MCF-7 human breast cancer cell line.
    Khojastehfar A; Aghaei M; Gharagozloo M; Panjehpour M
    Toxicol Mech Methods; 2015 Jan; 25(1):48-55. PubMed ID: 25403798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different growth response of Euglena gracilis to Hg, Cd, Cr and Ni compounds.
    Gajdosova J; Reichrtova E
    Anal Bioanal Chem; 1996 Mar; 354(5-6):641-2. PubMed ID: 15067462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.