These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12600787)

  • 1. Scaling analysis of polyacrylamide gel surfaces synthesized in the presence of surfactants.
    Chakrapani M; Mitchell SJ; Van Winkle DH; Rikvold PA
    J Colloid Interface Sci; 2003 Feb; 258(1):186-97. PubMed ID: 12600787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface scaling analysis of a frustrated spring-network model for surfactant-templated hydrogels.
    Buendía GM; Mitchell SJ; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046119. PubMed ID: 12443271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface tension-induced gel fracture. Part 1. Fracture of agar gels.
    Spandagos C; Goudoulas TB; Luckham PF; Matar OK
    Langmuir; 2012 May; 28(18):7197-211. PubMed ID: 22512657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model and field studies of the degradation of cross-linked polyacrylamide gels used during the revegetation of slate waste.
    Holliman PJ; Clark JA; Williamson JC; Jones DL
    Sci Total Environ; 2005 Jan; 336(1-3):13-24. PubMed ID: 15589246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regular and irregular deswelling of polyacrylate and hyaluronate gels induced by oppositely charged surfactants.
    Nilsson P; Hansson P
    J Colloid Interface Sci; 2008 Sep; 325(2):316-23. PubMed ID: 18565536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications.
    Denisin AK; Pruitt BL
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):21893-902. PubMed ID: 26816386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels.
    Barreiro-Iglesias R; Alvarez-Lorenzo C; Concheiro A
    J Control Release; 2001 Nov; 77(1-2):59-75. PubMed ID: 11689260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphical analysis for gel morphology. III. Gel size and temperature effects on the volume phase transition of gels.
    Hashimoto C; Ushiki H
    J Chem Phys; 2006 Jan; 124(4):044903. PubMed ID: 16460208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eliciting macroporosity in polyacrylamide and agarose gels with polyethylene glycol.
    Charlionet R; Levasseur L; Malandain JJ
    Electrophoresis; 1996 Jan; 17(1):58-66. PubMed ID: 8907519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force spectroscopy on single polymer incorporated into polymer gels.
    Okajima T; Tao XM; Azehara H; Tokumoto H
    J Nanosci Nanotechnol; 2007 Mar; 7(3):790-5. PubMed ID: 17450834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.
    Schenck DM; Fiegel J
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5917-28. PubMed ID: 26894883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological properties of gels formed by physical interactions between hyaluronan and cationic surfactants.
    Venerová T; Pekař M
    Carbohydr Polym; 2017 Aug; 170():176-181. PubMed ID: 28521984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled drug release from gels using lipophilic interactions of charged substances with surfactants and polymers.
    Paulsson M; Edsman K
    J Colloid Interface Sci; 2002 Apr; 248(1):194-200. PubMed ID: 16290522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled drug release from gels using surfactant aggregates. II. Vesicles formed from mixtures of amphiphilic drugs and oppositely charged surfactants.
    Paulsson M; Edsman K
    Pharm Res; 2001 Nov; 18(11):1586-92. PubMed ID: 11758767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of total percent polyacrylamide in capillary gel electrophoresis for DNA sequencing of short fragments. A phenomenological model.
    Harke HR; Bay S; Zhang JZ; Rocheleau MJ; Dovichi NJ
    J Chromatogr; 1992 Sep; 608(1-2):143-50. PubMed ID: 1430018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Sep; 12(9):612-9. PubMed ID: 1752240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microrheology of the liquid-solid transition during gelation.
    Larsen TH; Furst EM
    Phys Rev Lett; 2008 Apr; 100(14):146001. PubMed ID: 18518051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared spectroscopy for the analysis of neutralizer-Carbomer and surfactant-Carbomer interactions in aqueous, hydroalcoholic, and anhydrous gel formulations.
    Islam MT; Rodréguez-Hornedo N; Ciotti S; Ackermann C
    AAPS J; 2004 Dec; 6(4):e35. PubMed ID: 15760100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite hydrogels of polyacrylamide and crosslinked pH-responsive micrometer-sized hollow particles.
    Pafiti K; Cui Z; Carney L; Freemont AJ; Saunders BR
    Soft Matter; 2016 Jan; 12(4):1116-26. PubMed ID: 26610808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.
    Halacheva SS; Adlam DJ; Hendow EK; Freemont TJ; Hoyland J; Saunders BR
    Biomacromolecules; 2014 May; 15(5):1814-27. PubMed ID: 24684558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.