These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

692 related articles for article (PubMed ID: 12600936)

  • 1. siRNAs can function as miRNAs.
    Doench JG; Petersen CP; Sharp PA
    Genes Dev; 2003 Feb; 17(4):438-42. PubMed ID: 12600936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms.
    Zeng Y; Yi R; Cullen BR
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9779-84. PubMed ID: 12902540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.
    Liu J; Valencia-Sanchez MA; Hannon GJ; Parker R
    Nat Cell Biol; 2005 Jul; 7(7):719-23. PubMed ID: 15937477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs.
    Nielsen CB; Shomron N; Sandberg R; Hornstein E; Kitzman J; Burge CB
    RNA; 2007 Nov; 13(11):1894-910. PubMed ID: 17872505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microRNA in a multiple-turnover RNAi enzyme complex.
    Hutvágner G; Zamore PD
    Science; 2002 Sep; 297(5589):2056-60. PubMed ID: 12154197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of gene function in somatic mammalian cells using small interfering RNAs.
    Elbashir SM; Harborth J; Weber K; Tuschl T
    Methods; 2002 Feb; 26(2):199-213. PubMed ID: 12054897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-transcriptional gene silencing by siRNAs and miRNAs.
    Filipowicz W; Jaskiewicz L; Kolb FA; Pillai RS
    Curr Opin Struct Biol; 2005 Jun; 15(3):331-41. PubMed ID: 15925505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4.
    Zhou N; Fang J; Mukhtar M; Acheampong E; Pomerantz RJ
    Gene Ther; 2004 Dec; 11(23):1703-12. PubMed ID: 15306840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivation and function of small interfering RNAs and microRNAs.
    Cullen BR
    Virus Res; 2004 Jun; 102(1):3-9. PubMed ID: 15068874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-directed cleavage of HOXB8 mRNA.
    Yekta S; Shih IH; Bartel DP
    Science; 2004 Apr; 304(5670):594-6. PubMed ID: 15105502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A detailed investigation of accessibilities around target sites of siRNAs and miRNAs.
    Kiryu H; Terai G; Imamura O; Yoneyama H; Suzuki K; Asai K
    Bioinformatics; 2011 Jul; 27(13):1788-97. PubMed ID: 21531769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial tethering of Argonaute proteins for studying their role in translational repression of target mRNAs.
    Eckhardt S; Szostak E; Yang Z; Pillai R
    Methods Mol Biol; 2011; 725():191-206. PubMed ID: 21528455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric RNA duplexes mediate RNA interference in mammalian cells.
    Sun X; Rogoff HA; Li CJ
    Nat Biotechnol; 2008 Dec; 26(12):1379-82. PubMed ID: 19029911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positional effects and strand preference of RNA interference against hepatitis C virus target sequences.
    Smith RM; Smolic R; Volarevic M; Wu GY
    J Viral Hepat; 2007 Mar; 14(3):194-212. PubMed ID: 17305886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Dicer enhances RNAi-mediated gene silencing by short-hairpin RNAs (shRNAs) in human cells.
    Mikuma T; Kawasaki H; Yamamoto Y; Taira K
    Nucleic Acids Symp Ser (Oxf); 2004; (48):191-2. PubMed ID: 17150543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis.
    Pillai RS; Artus CG; Filipowicz W
    RNA; 2004 Oct; 10(10):1518-25. PubMed ID: 15337849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects on RNAi of the tight structure, sequence and position of the targeted region.
    Yoshinari K; Miyagishi M; Taira K
    Nucleic Acids Res; 2004; 32(2):691-9. PubMed ID: 14762201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon.
    Soifer HS; Zaragoza A; Peyvan M; Behlke MA; Rossi JJ
    Nucleic Acids Res; 2005; 33(3):846-56. PubMed ID: 15701756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short RNAs repress translation after initiation in mammalian cells.
    Petersen CP; Bordeleau ME; Pelletier J; Sharp PA
    Mol Cell; 2006 Feb; 21(4):533-42. PubMed ID: 16483934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling of RNAi from active translation in mammalian cells.
    Gu S; Rossi JJ
    RNA; 2005 Jan; 11(1):38-44. PubMed ID: 15574516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.