BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12601083)

  • 1. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells.
    Eliasson L; Ma X; Renström E; Barg S; Berggren PO; Galvanovskis J; Gromada J; Jing X; Lundquist I; Salehi A; Sewing S; Rorsman P
    J Gen Physiol; 2003 Mar; 121(3):181-97. PubMed ID: 12601083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells.
    Merrins MJ; Stuenkel EL
    J Physiol; 2008 Nov; 586(22):5367-81. PubMed ID: 18801842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of a cAMP-regulated Ca(2+)-signaling pathway in pancreatic beta-cells by the insulinotropic hormone glucagon-like peptide-1.
    Holz GG; Leech CA; Habener JF
    J Biol Chem; 1995 Jul; 270(30):17749-57. PubMed ID: 7543091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal transduction of PACAP and GLP-1 in pancreatic beta cells.
    Leech CA; Holz GG; Habener JF
    Ann N Y Acad Sci; 1996 Dec; 805():81-92; discussion 92-3. PubMed ID: 8993395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca
    Hamilton A; Zhang Q; Salehi A; Willems M; Knudsen JG; Ringgaard AK; Chapman CE; Gonzalez-Alvarez A; Surdo NC; Zaccolo M; Basco D; Johnson PRV; Ramracheya R; Rutter GA; Galione A; Rorsman P; Tarasov AI
    Diabetes; 2018 Jun; 67(6):1128-1139. PubMed ID: 29563152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells.
    Olsen HL; Hoy M; Zhang W; Bertorello AM; Bokvist K; Capito K; Efanov AM; Meister B; Thams P; Yang SN; Rorsman P; Berggren PO; Gromada J
    Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5187-92. PubMed ID: 12700357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PI3 kinases p110α and PI3K-C2β negatively regulate cAMP via PDE3/8 to control insulin secretion in mouse and human islets.
    Kolic J; Manning Fox JE; Chepurny OG; Spigelman AF; Ferdaoussi M; Schwede F; Holz GG; MacDonald PE
    Mol Metab; 2016 Jul; 5(7):459-471. PubMed ID: 27408772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of forskolin and the role of Epac2A during activation, activity, and deactivation of beta cell networks.
    Skelin Klemen M; Dolenšek J; Križančić Bombek L; Pohorec V; Gosak M; Slak Rupnik M; Stožer A
    Front Endocrinol (Lausanne); 2023; 14():1225486. PubMed ID: 37701894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes.
    Ramanadham S; Turk J; Bhatnagar S
    Compr Physiol; 2023 Jun; 13(3):5023-5049. PubMed ID: 37358504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells.
    Nagao M; Lagerstedt JO; Eliasson L
    Diabetol Int; 2022 Jul; 13(3):471-479. PubMed ID: 35694000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine Release Is Potentiated by cAMP via EPAC2 and Ca
    Meadows MA; Balakrishnan V; Wang X; von Gersdorff H
    J Neurosci; 2021 Nov; 41(46):9503-9520. PubMed ID: 34620721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling.
    Stožer A; Paradiž Leitgeb E; Pohorec V; Dolenšek J; Križančić Bombek L; Gosak M; Skelin Klemen M
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FXR-mediated epigenetic regulation of GLP-1R expression contributes to enhanced incretin effect in diabetes after RYGB.
    Kong X; Feng L; Yan D; Li B; Yang Y; Ma X
    J Cell Mol Med; 2024 Mar; 28(6):e16339. PubMed ID: 33611845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Epac in Cancer Progression.
    Wehbe N; Slika H; Mesmar J; Nasser SA; Pintus G; Baydoun S; Badran A; Kobeissy F; Eid AH; Baydoun E
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Membrane Permeable Prodrug of S223 for Selective Epac2 Activation in Living Cells.
    Xu Y; Schwede F; Wienk H; Tengholm A; Rehmann H
    Cells; 2019 Dec; 8(12):. PubMed ID: 31817822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenite and its trivalent methylated metabolites inhibit glucose-stimulated calcium influx and insulin secretion in murine pancreatic islets.
    Huang M; Douillet C; Stýblo M
    Arch Toxicol; 2019 Sep; 93(9):2525-2533. PubMed ID: 31332465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis.
    Guček A; Gandasi NR; Omar-Hmeadi M; Bakke M; Døskeland SO; Tengholm A; Barg S
    Elife; 2019 May; 8():. PubMed ID: 31099751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications.
    Eliasson L; Esguerra JLS; Wendt A
    Diabetol Int; 2017 Jun; 8(2):139-152. PubMed ID: 30603317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development.
    Robichaux WG; Cheng X
    Physiol Rev; 2018 Apr; 98(2):919-1053. PubMed ID: 29537337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men.
    Rorsman P; Ashcroft FM
    Physiol Rev; 2018 Jan; 98(1):117-214. PubMed ID: 29212789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.